2004年度 木材強度・木質構造研究会
春期シンポジウム

「新潟県中越地震における木造建築物の被害」

2005年3月18日
京都

主催：日本木材学会木材強度・木質構造研究会
主催：木材強度・木質構造研究会
日時：3月18日（金）13時30分～15時30分
会場：京都大学【共北31講義室（第6会場）】
テーマ：「新潟県中越地震における木造建築物の被害」

講演:
1. 平成16年新潟県中越地震の特徴と木造家屋の被害状況
 国土技術政策総合研究所 植木敬太氏

2. 平成16年(2004年)新潟県中越地震による木造建物の被害
 —戸建て木造住宅の地震被害調査について—
 独立行政法人森林総合研究所 杉本健一氏

3. 平成16年(2004年)新潟県中越地震による木造建物の被害
 —集成材建物の地震被害調査について—
 独立行政法人森林総合研究所 平松 靖氏

4. 伝統木造の動的特性の推定
 京都大学生存圈研究所 田原敦士氏

5. 駿光,田川,武道見,木沢,田麦山地区における木造建築の被害概要と傾向
 京都大学生存圈研究所 小松幸平氏
「新潟県中越地震における木造建築物の被害」
目次

1. 平成16年新潟県中越地震の特徴と木造家屋の被害状況
 読本敬大 ・・・・ 1

2. 平成16年(2004年)新潟県中越地震による木造建物の被害
 －戸建て木造住宅の地震被害調査について－
 杉本健一 ・・・・ 18

3. 平成16年(2004年)新潟県中越地震による木造建物の被害
 －集成材建物の地震被害調査について－
 平松靖 ・・・・ 20

4. 伝統木造の動的特性の推定
 田部敦士 ・・・・ 52

5. 鳥越,田川,武道塚,木沢,田麦山地区における木造建築の被害概要と傾向
 小松幸平 ・・・・ 69

寄稿原稿
新潟県中越地震木造建物被害調査
腐朽・荒害の視点から
 高橋由彦,土居茂二 ・・・・ 80

資料
戸建て木造住宅の地震被害調査に関する資料
杉本健一,青木順治 ・・・・ 91
1. はじめに

平成16年10月23日に発生した新潟県中越地震の震源を震源とする地震は、阪神大震災以降の震度7を記録し、木造住宅をはじめとする多くの建物に甚大な被害を与えたりした。これに対して、地震発生翌日から国総研・建研は共同して被害の規模、程度、実態把握に努め、その調査結果のうち、他の調査隊により報告されていない事項を中心に報告する。

2. 震度の特徴

震度7の本震は、1995年の兵庫県南部地震以来の震度7である。これに引き続いて同日にM6クラスの余震が3回発生し、12月までに19回の震度5以上を記録したことも今回の地震の特徴である。本震と主な余震の震源の位置関係を図1に示す。本震の加速度応答スペクトルと疑似速度応答スペクトルをそれぞれ図2、図3に示す。気象台の観測値（JMA）で比較すると小千谷のEW成分は、加速度、速度ともに1995年の神戸のNS成分に匹敵することが分かる。

各観測点における最大加速度と最大速度の3成分合成値を比較して図4に示す。最大速度100 cm/s以上、最大加速度800 gsec以上、の領域（図4太枠内）で構造物に大きな被害が出る見込みであるとされているが、川口の震源は両者を大きく上回り、建物の被害が想定されてい。また、山古志もこの領域内にあるが、小千谷と川口の余震は速度が100 cm/sに満たず、建物の被害はさほど大きくなかったことが示されている。

図1 新潟県中越地震の本震。余震の震源
図2 震度7の本震
図3 震度5以上
図4 最大加速度と最大速度（3成分合成値）
3. 上空からみた被害概況

地震発生後、道路交通網が寸断されており、被害が大きな地域へ及ぼすか入れなかったので、ヘリコプターに搭乗して上空から被災地を観察した。建築物の被害はヘリコプターからは見えないが、地盤変状、ブルーシートの有無（屋根被害の有無）は確認できた。

飛行日時：10月25日（月）10:00～12:00
飛行経路：新潟空港→信濃川河川事務所ヘリポート→長岡市→図潟地区→山古志村→現之町→川口町→十日町→川西町→小千谷市→朝日川流域→新幹線線路現場

写真1 長岡市南部ヘリコプター
写真2 朝日川流域の大崩落

写真3 朝日川流域の地滑り現場と
崩落落ちそうな家屋
写真4 長岡市幹線の大崩壊メモリアル場

（1次 3人遺体現場）
写真11 十日町市街地（プールシートの割合は比較的低い）
写真12 十日町市郊外集落（市街地同様プールシートの割合は低い）
写真13 川西町（プールシートの割合は比較的低い）
写真14 川口町役場付近（プールシートの割合は比較的低い）

4. 被害調査の目的、概要
（１）調査の目的
初動調査は、平成16年新潟県中越沖地震発生に伴い、建築物の被害が多数発生したため、応急危険度判定を速やかに、かつ迅速に実施するための体制を作り上げるにあたり、建築物の被害状況を把握し、判定士の効率的な動員、並びに判定作業の効率的な進行を支援することを目的として行った。また、建築物の被害状況を把握することによって、建築物の被害原因の究明、並びにそのための調査手順、方法等の計画を立案するための基礎資料を得ることも目的とした。

2次調査は、初動調査で把握した各地の被害状況に基づいて、被害が大きな地域に集中した木造住宅等の木造建築物の構法、構造仕様、構造要素の配置などを把握し、被害の程度と関連づけることによって平成16年新潟県中越地震による被害の特徴を把握し、被害の原因を究明するための基礎資料を得ることを目的として行った。

3次調査は、2次調査までで明らかになった今回の災害の特徴的な事例を集中的に詳細調査を実施することを目的として行った。特に、2階の損傷が1階の損傷より著しい場合、
（2）初動調査の日程と地域

初動調査：10月24日～29日、小千谷市、川口町、旭之宮町、川西町、長岡市

2次調査：11月7日～10日、小千谷市、川口町、魚沼市（旧旭之宮町）

3次調査：12月12日～13日、小千谷市、川口町、魚沼市（旧旭之宮町）、長岡市

主な被災地のうち、十日町市、栃尾市、越路町、小国町、魚沼市（旧大野原村、旧守門村、旧無田村）等は、予定、時間的制約から調査していない。

（3）調査者

調査者は下記の5名である。各人の調査日時は（）に示すとおりである。

独立行政法人建築研究所構想研究グループ上席研究員 向谷佳直
（10/26～28、11/7～10、12/12～13）

独立行政法人建築研究所構想研究グループ主任研究員 山口修由
（11/7～10、12/12～13）

国土交通省国土技術政策総合研究所建築研究部構想基準研究室 主任研究官 菅原雅史
（11/7～10、12/12～13）

国土交通省国土技術政策総合研究所建築研究部基準認証システム研究室 主任研究官 稲本敬大（10/24～28、11/7～10、12/12～13）

独立行政法人建築研究所構想研究グループ交流研究員 村上知徳（12/12～13）

（4）被災地域の位置関係

今回調査した範囲と避難等がなされた地域による主なトピックとの位置関係を図5に示す。ただし、今回の調査範囲は、各市町村及び各々の集落・道路・交通が分断されている状況下でとりあげずアプローチ可能な市町村・集落について行った初動調査、並びにこれに基づいて比較的被害が大きいと判断された地区の概要を抽出した2次調査によるものであり、同時に時間的、労力的にも限られた状況下で行ったものである。今回の地域による建築物関係被害の全体像を把握しているものではない。

（5）調査内容の概要

以下に示す地域、集落に対して被害の概要調査、詳細調査、情報収集等を行った。

小千谷市中心市街地…被害概要調査
小千谷市東吉谷…被害概要調査、詳細調査2物件
川口町川口…被害概要調査、詳細調査5物件
同 武道今…被害概要調査、詳細調査1物件
同 田辺町…被害概要調査
同 和田町…被害概要調査、詳細調査1物件
同 吉良町…被害概要調査
同 東山町…被害概要調査
同 紅葉山町…被害概要調査、詳細調査9物件
魚沼市（旧旭之宮町）…被害概要調査
同 竜王町…被害概要調査、詳細調査9物件
長岡市…市街地による情報収集
川西町…町田町による情報収集

- 5 -
図5 被災地域の位置関係

（6）詳細調査の概要

被害の概要調査を行った地域のうち、被害が大きい地域のなかで大きな被害を受けた物件と、比較的被害が軽微な物件を選び、その建築物の属性（階数、用途、構造方法、地下または基礎の構造方法等）、敷地条件（地盤の状況、擁壁の有無等）とその被害状況、基礎、土台、外壁、内壁、屋根の仕様とその被災程度、主要構造部分の仕様（柱、筋かいかの寸法と留め付け方法等）とその被害程度等を調査した。各部の残留変形を計測し、建築物の間取り、壁の配置などを図面に書き取るか、または図面が存在する物件についてはこれを利用した。建設年代や増改築状況等については、居住者に対してヒアリング調査した。

詳細調査を実施した物件の概要、並びにその被害概況を表1に示す。また、それらの外観写真を図表のに続いて示す。
<table>
<thead>
<tr>
<th>地区</th>
<th>記号</th>
<th>番年数</th>
<th>階数</th>
<th>応急危険度</th>
<th>残留変形角の最大値</th>
<th>損害概況</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>番年</td>
<td>1S1</td>
<td>33</td>
<td>木2</td>
<td>危険</td>
<td>17</td>
<td>1階傾斜大</td>
<td>作図</td>
</tr>
<tr>
<td>昭和</td>
<td>1S2</td>
<td>24</td>
<td>RC+木2</td>
<td>危険</td>
<td>20</td>
<td>木造部分1階傾斜大</td>
<td>作図</td>
</tr>
<tr>
<td>之尾</td>
<td>1S3</td>
<td>24</td>
<td>木2</td>
<td>要注意</td>
<td>残留変形なし</td>
<td>基礎に崩壊、煉瓦一部落下</td>
<td>作図</td>
</tr>
<tr>
<td>内田</td>
<td>1S4</td>
<td>20</td>
<td>木2</td>
<td>危険</td>
<td>200</td>
<td>基礎に崩壊、煉瓦落下</td>
<td>作図</td>
</tr>
<tr>
<td>町</td>
<td>1S5</td>
<td>7</td>
<td>木2</td>
<td>調査中</td>
<td>残留変形なし</td>
<td>被害程度</td>
<td>人手</td>
</tr>
<tr>
<td>新道</td>
<td>1S6</td>
<td>34</td>
<td>木2</td>
<td>危険</td>
<td>17</td>
<td>1階傾斜大</td>
<td>作図</td>
</tr>
<tr>
<td>潮島</td>
<td>1S7</td>
<td>4</td>
<td>RC+木2</td>
<td>危険</td>
<td>残留変形なし</td>
<td>RC,底部分に壁面変状によると</td>
<td>人手</td>
</tr>
<tr>
<td>1S8</td>
<td>23</td>
<td>木2</td>
<td>要注意</td>
<td>100</td>
<td>塩分かび屋根</td>
<td>作図</td>
<td></td>
</tr>
<tr>
<td>1S9</td>
<td>29</td>
<td>木2</td>
<td>危険</td>
<td>170</td>
<td>基礎の傾斜</td>
<td>作図</td>
<td></td>
</tr>
<tr>
<td>川口</td>
<td>1B1</td>
<td>約49</td>
<td>木2</td>
<td>危険</td>
<td>3</td>
<td>1階傾斜大</td>
<td>作図</td>
</tr>
<tr>
<td>B2</td>
<td>3</td>
<td>RC+木2</td>
<td>調査中</td>
<td>残留変形なし</td>
<td>善管管理、内装の補強</td>
<td>人手</td>
<td></td>
</tr>
<tr>
<td>町</td>
<td>1B3</td>
<td>12</td>
<td>RC+木2</td>
<td>危険</td>
<td>9</td>
<td>木造部分1階傾斜大</td>
<td>作図</td>
</tr>
<tr>
<td>武田</td>
<td>1B4</td>
<td>34</td>
<td>木2</td>
<td>要注意</td>
<td>残留変形なし</td>
<td>基礎に傾斜</td>
<td>作図</td>
</tr>
<tr>
<td>塩廻</td>
<td>2B5</td>
<td>7</td>
<td>RC+木2</td>
<td>要注意</td>
<td>174</td>
<td>塩分がめくれ上がる</td>
<td>備考</td>
</tr>
<tr>
<td>川口</td>
<td>1K1</td>
<td>55</td>
<td>木2</td>
<td>危険</td>
<td>16</td>
<td>木造部分1階傾斜大</td>
<td>作図</td>
</tr>
<tr>
<td>口</td>
<td>1K2</td>
<td>53</td>
<td>木2</td>
<td>危険</td>
<td>16</td>
<td>屋根1階傾斜大</td>
<td>作図</td>
</tr>
<tr>
<td>町</td>
<td>1K3</td>
<td>23</td>
<td>RC+木2</td>
<td>危険</td>
<td>18</td>
<td>木造部分1階傾斜大</td>
<td>作図</td>
</tr>
<tr>
<td>川口</td>
<td>1K4</td>
<td>30</td>
<td>木2</td>
<td>危険</td>
<td>150</td>
<td>延貼傾斜（1階に使わぬ調査）</td>
<td>備考</td>
</tr>
<tr>
<td>口</td>
<td>1K5</td>
<td>27</td>
<td>木2</td>
<td>危険</td>
<td>120</td>
<td>外壁モルタルの剥離</td>
<td>備考</td>
</tr>
<tr>
<td>塩廻</td>
<td>2W1</td>
<td>41</td>
<td>木2</td>
<td>危険</td>
<td>15</td>
<td>2階の傾斜が1階よりも大きい</td>
<td>作図</td>
</tr>
<tr>
<td>昭和</td>
<td>2H1</td>
<td>不明</td>
<td>木2</td>
<td>危険</td>
<td>19</td>
<td>2階の傾斜が1階よりも大きい</td>
<td>作図</td>
</tr>
<tr>
<td>昭和</td>
<td>2H2</td>
<td>不明</td>
<td>木2</td>
<td>危険</td>
<td>2</td>
<td>2階崩壊</td>
<td>人手</td>
</tr>
</tbody>
</table>

※1：川口町南津南、※2：小平市南東谷

- 7 -
5. 多雪地域の木造構法
被害を受けた新潟県の木造住宅は私が国でも有数の豪雪地帯であることはあまりに有名である。豪雪対策として、トタン屋根がほとんどは、上空からの被害対策調査でも明らかにあった。仮設住宅と呼ばれる住宅は大きく分けて二通りあり、一つは融雪装置によって雪を除去するもので、もう一つは昭和55年頃から建てられるようになった高層式木造住宅（写真15）である。鉄骨や鉄筋コンクリートで基礎を高く立ち上げ、その上に木造を建てるものである。後の高層式木造の高層部分の高層種別は数通り存在するようである。大きく分けて、鉄骨造としたもの、鉄筋コンクリート造（以下、RC造）としたもの、立ち上がり部分をRC造とし、上階の床を鉄骨造としたものである。この高層式木造に対して一部に損害を与えるような本格的な地震波が強めて入力されることがになる。

高層式木造は、以前は建築基準法上の位置づけが有効されておらず、実効上3階建てに見えるもので、構造計算が実施されていなかったが、実施した例は少なかったようである。昭和16年10月に「新潟県・特別豪雪地帯等における高層式住宅の特例基準」が施行され、基準法上の位置づけが明確化され、構造計算を要する場合があることがになった。この特例の概要は次の通りである。

1）豪雪地帯対策特別措置法に規定する特別豪雪地帯およびこれに隣接する区域の一部では、一つの鉄筋コンクリート造、鉄骨造（軽量鉄骨造を除く）により18m以下の床下部分を設けることができる。
2）床下部分は18mを越えて新潟県知事が定める重直積雪量まで高くなる。
3）床下部分の面積の算定から除くことができる。
4）床下部分の高さが15m未満の場合は階数に算入しないことができる。

つまり、床下部分の高さが15mを超える場合は3階建てとしての許容応力度等計算が必要とされている。

我々が調査した範囲では、築7年以下の高層式木造は比較的大きな被害を受けていないのに対し、築3、4年もののものは比較的被害軽微であった。特例基準が有効に機能した可能性が示唆された。

6. 各地の被害状況
6.1 小千谷市における被害の概要
（1）小千谷町の中村町付近（小千谷市中村、東栄など）の被害
中心市街地で店舗併用住宅などの開口の開口が大きな建物（写真16）、土塁り壁を有するよう比較的少ない形式に基づく建物（写真17）が選択的に倒壊していなかった。写真16の東栄2丁目付近は商店街で、後背地が庄で下がっている。上部構造の支持が良くなったために——9——
倒壊した建物もあるものと推測される。
写真17の平成2丁目付近の神社ではほとんどのみ石が西側に倒れている（写真18）。逆
倒壊した建物の面積は45cm×103cm、30cm×64cm。0.45G程度を入力させたと判断され
る。神社の本堂も大きく南に傾斜（写真19）していた。

写真16 倒壊した住居付近の住宅
写真17 倒壊した比較的古い横浜の住宅
写真18 ほとんどどの遺石が倒れ
写真19 大きく傾いた本堂

2）小千谷市東吉谷地区の被害分布
大字東吉谷とされる地区には、数十戸程度の小集落が断続的に山階に散在している。東
吉谷地区を含む山階では、既製家屋が延焼の中に存在するものと推測される。関
越高速自動車道の上から、吉谷小学校の周辺に4、5棟の木造家屋の倒壊（写真20）が
集中しているのが確認された。畑屋、車庫の倒壊が目立つが住宅の倒壊もある。破壊した
ものを含めると全体の1/3程度は全壊に相当する。小千谷市街地よりも被害が高く、
被災の程度も大きいが、川口町、旧居之町新道島地区よりは被害率は低い。2階のみの
崩壊状態、崩壊した建物（写真21）。2階の残留変形が1階よりも大きい物件（2H-1）が
少なくとも5以上はあり、高床式木造も1階のRC造部分から2階以上の木造部分が崩壊
した被害（写真22）があった。これらは、近年の地震（平成7年兵庫県南部地震、平
成12年島根県西部地震、平成15年宮城県北部連続地震）による同様の被害例より、そ
の割合が高い。
６・２ 川口町の被害状況

（１）町役場付近（通称、東川口地区）の被害分布と被害概況

当初、最も被害が大きな場所は小千谷市であると報道されていた。しかし、実際現地に入ってみると、軒並み倒壊家屋が立ち並ぶ光景が目立った（写真 23）。これは、交通機関が中断されたために同町が孤立し、報道陣が川口町に立ち入れなかったためである。また、空からの被害状況調査においてブルーシートの割合がそれほど多くないと着取されなかったのは、倒壊家屋が多く、これにはブルーシートを被せなかったか、または、交通が中断されたので大量のブルーシートが入手できなかったことによるものと推測される。

町役場付近のことを地元の人は東川口地域と呼ぶようであるが、ここには川口町のうち約500世帯が集中し、倒壊家屋（民家、商店併用住宅）がざっと見ただけで15棟以上ある。大破（写真 24）したものや、非住居の被害も含めると役場付近の半数以上の建築物が全壊に近い。

町役場付近からJR越後川口駅にかけてのエリアに大きな被害を受けた建物が集中し、町役場付近から信濃川方向には、比較的被害が軽い。または被害の大きな建築物が少ない。

JR越後川口駅の北東側は河岸段丘で切り立っており、その中にあたる地滑り地山部分の被害が大きいとも考えられる。

町役場付近では数棟が崩壊し、不規範を生じている箇所はほとんどないが、あったとしてもその程度は軽いものと見受けられるため、これらの被害はほぼ難解によるものと考えられる。ただし、町役場の北東に走る主要地方道小千谷川口大和線は、断線の影響が至
るところで見られた。
町役場付近の宝篋寺の墓石はほぼ東西に転倒し（写真25）、ここでも主振動方向は東西方向と考えられた。工事も大きく傾斜していた。11/10の時点では復旧工事が進んでいた。
高床式木造住宅は同じ地域同様、比較的被害が軽微であるものが多かったが、1層をＳ造とし、2、3階を木造とした住宅の2階部分が激しく損傷し、大きく傾斜した例（1-K-1号）があった。2層以上の木造部分が土壌を有する伝統的な構法であったため、耐震要因として壁の耐力が不足分であったと推測される。1層をRC造とし、2、3階の木造部分が激しく損傷した例（1-K-3号、第60～70年を推測される木造建築物が倒壊した例、大破した土壁（写真26）、液状化によると見られる礫砂の跡なども確認された。

写真23 割れ軒を倒壊した家屋が並ぶ川口町
後場付近

写真24 大破した店舗併用住宅

写真25 墓石の転倒（画面右が西）

写真26 大破した土壁

（2）川口町武道場地区の被害状況
川口町の武道場地区は、緩やかな傾斜地に約50～60世帯の木造家屋が建つ集落である。例で見られるB-1に含めると家屋の半数以上がほぼ全壊したとみられる。木造住宅の倒壊も目立った。
高床木造は転倒被害軽微（B-1）であるが、2階以上の木造部分が傾斜した例（B-1号）もあった。また、住民の話に基づくと、2階の床がめくれ上がると等の被害（B-2）もあったようである。なお、障子紙が1方向（東西方向）のみ破れている例（写真28）が

—12—
確認され、主動動方向は東西南方向に近かったと推測された。
武道寺地区の中でも上部（奥）の方が、比較的被害が大きい。これも地滑り地形の影響
である可能性がある。　

写真27 川口町武道寺の倒壊家屋　写真28 一方向（東西）の障子の崩れ

（3）川口町平良山地区の被害
川口町田麦山地区は、武道寺から北西に連なる台地の上に広がる旧国道沿い商店家屋
が点在する約 170 戸の大集落（写真29）である。家屋（写真30）、農作業小屋等の倒壊
が 10 種以上確認され、大破を含めると多数近くの住民建物が全壊に近い被害を受けたと
見受けられた。地盤変状による傾斜が大きな家屋、一見被害軽微に見えるが、建具が曲が
るなどの被害を受けた小屋屋根が建っている住居、部分部分が破壊して倒壊した作業小屋なども
確認された。場合によっては武道寺地区より被害が大きいとする被害報告もある。

写真29 田麦山地区の概要　写真30 田麦山地区の倒壊家屋

（4）川口町和南津地区の被害
川口町和南津は、トンネルの崩壊が発生した国道17号線の和南津トンネル東側と同ト
ンネルを挟んで魚沼市（旧展示内町）側に延びる約 100 戸程度の集落である。旧展示内町
和南津地区は信濃川の対岸に位置する。納屋または作業小屋の倒壊が複数確認された。
大破した家屋や、残留変形の大きい家屋が複数確認されたが、倒壊率は川口町川口、旧展示
内町和南津地区より低い。特に和南津トンネル手前の数十戸に被害が集中しており、この数
十戸は半数以上が大破を含めて全壊であるが、それ以外のエリアで全壊したものは半数以
下と思われる。

－43－
2階の残留変形が1階の残留変形より大きい特殊な例（2-W-1）を確認した。
1階建営業・2・3階建木造の住宅の1階部分が傾斜している例も確認された。地盤変状
も確認され、新幹線の橋脚がせん断破壊していた。和倉津トンネルの魚沼市側の小集落に
は倒壊住戸は1棟あるものの、被害者はトンネル南側や魚沼市（鳴町内）新道島地區より
はかなり低い。

（5）川口町におけるその他の地区の被害
木沢地区：約60世帯程の山間の小さな集落。10月27日につづく折りの山道を住民自
らの手で復旧し、孤立状態から解放された。－現、木造住戸に大きな被害はな
いように見受けられるが、最上部に位置する農業所、家の屋根は大きな被害を受け
た。その他、地盤変状により養殖の養殖用ため池の水が抜け、養殖魚に甚大な被
害が出て。
牛ヶ池地区：豊橋川沿いの数十戸からなる集落。集落へ続く道路はいずれも地滑りによる
危険のため通行止めで孤立しているが、住民は通行。著しい被害は着見され
なかった。
相川地区：被害が大きい武道町の近くの世帯数数十程度の小さな集落。住宅の倒壊、大破
等が4棟程度見られた。
三浦地区：越後川口駅東側の河岸段丘中腹に数十戸の住宅が点在する。坂道の踏盤
被害が大きい。住宅の倒壊（写真472）、大破の割合が高い。おそらく半数以
上が大破以上で、原因はほぼ地盤変状によるものと推測される。

6. 3 旧鳴町内町の被害
(1) 魚沼市（旧鳴町内町）亀井地区の被害状況
Old town of the Akagawa area is situated in the valley of the 50 ～60 households of the
settlement. The upper level of the landslide caused dam break in the area, and the emergency
vehicle was removed. The Akagawa area is on the edge of the hillside. In addition, the
area of the valley is spacious and the area is densely populated. The investigation was done
but the result was not clear because the landslide was not big enough. Therefore, the
governor of the valley decided to use the landslide area for the new town. The new town
will be named after the old town.

(2) 魚沼市（旧鳴町内町）新道島地区の被害状況
集落の入り口（東側）は比較的被害が軽微。応急危険度判定「危険」においても、構造体
の損傷や、むろし屋根瓦、地盤、窓ガラス等によりそのものが目立つ。集落奥（西側）は、
応急危険度判定「危険」のほとんどを占める。県道北側から高速道路沿いの傾斜地に建つ
数棟（例えば、1-5-1, 1-5-2など）は明らかに変動による構造体の損傷によるもので、
残留変形が極めて大きい。倒壊を含めた大破の割合は、川口町川口、同武道町、小千谷市
東谷川より大きいと推測された。

比較的新しい1階RC造の高床式木造は、比較的被害が軽微である。地盤変状により、
RC造部分に亀裂が入った住宅（1-5-7）もあった。大破した（残留変形が大きい）住宅（1-5-1）
は土壌壁主体であり、伝統的な構法に基づいていたが、筋切りも存在した。1層（住宅
か倉庫か不明）が崩壊した住宅（写真32）を確認。上部構造の地盤変状による被害と純
粹な変動的被害の両者が見られる。

-14-
7. 高架建築物の応急危険度判定

地震直後に、新潟県は国土交通省等の支援を得て、被災建築物の応急危険度判定を実施した。判定は、建築物の(1)震動による構造物の損傷、(2)地盤変状による建物の損傷、(3)化けもの、地震等による影響の可能性、(4)当該建物上部の構造物等の落下可能性を調査し、危険か要注意かを判断し、(1)～(4)の判定結果で1つでも「危険」と判定されたものは「危険」、1つも「危険」、要注意」がなければ「調査済」（安全とは言わない）と判定するものである。

その判定結果を世帯数、市町村発表の住宅全壊件数などと比較して表2に示す。主な市町村の世帯数を基にした判定結果の比率を比較して図6に示す。判定実施率から、満調査に近い規模で実施されたのは越後、川口、旧城、小国町、小国町、いずれも「危険」の割合が高いため、なお地震に近い川口町の被害数が極めて多いことが懸念される。

建築物の被害分布は、ミクロに見ると地震動の大小関係が深いが、しかし、建築物の耐震性が同様の分布であることと仮定できる場合はこの限りでない。市町村単位で建築物の耐震性の分布に有意な差があることは考えにくい。よって市町村単位での被害率は、人力された地震動の大小とさほど大きくないとと思われる。

図6 応急危険度判定結果の分布

- 15 -
| 市町村名 | 世帯数 | 住家数 | 全結構数 | 金属性相数 | 定数 | 議論数 | 定数 | 設定 | 設定 | 定数 | 設定 |
|---|
| 長崎市 | 6777 | 825 | 12 | 6.985 | 10 | 1.287 | 2.547| 1.371 | 6.985 | 1.9 | |
| 見附市 | 13066 | 54 | 0.41 | 1.713 | 13 | 84 | 2.882| 3.174 | 1.713 | 0.6 | | | | | | | | | | | | | | | | | | | |
| 霧島市 | 7413 | 44 | 0.59 | 1.003 | 14 | 247 | 380 | 376 | 1.003 | 3.3 | | | | | | | | | | | | | | | | | | | |
| 越路町 | 4051 | 141 | 3.48 | 0.990 | 101 | 241 | 1.122| 2.754 | 0.990 | 5.5 | | | | | | | | | | | | | | | | | | |
| 小野市 | 12375 | 562 | 5.35 | 6.329 | 91 | 1.033 | 2.076| 3.217 | 6.329 | 8.3 | | | | | | | | | | | | | | | | | | |
| 川内町 | 1595 | 570 | 35.74 | 2.271 | 142 | 664 | 696 | 911 | 2.271 | 41.6 | | | | | | | | | | | | | | | | | | |
| a）壱之内町 | 2675 | 52 | 1.94 | 3.023 | 113 | 467 | 913 | 1.643 | 3.023 | 17.5 | | | | | | | | | | | | | | | | | |
| b）和歌町 | 2439 | 10 | 0.91 | 5.19 | 21 | 149 | 164 | 206 | 5.19 | 6.1 | | | | | | | | | | | | | | | | |
| a）和歌町 | 1482 | 5 | 0.34 | 5.32 | 36 | 75 | 167 | 206 | 5.32 | 5.3 | | | | | | | | | | | | | | | | |
| b）和歌町 | 695 | 0 | 0.00 | 276 | 40 | 24 | 96 | 156 | 276 | 3.5 | | | | | | | | | | | | | | | |
| a）六町町 | 8734 | 3 | 0.03 | 56 | 1 | 17 | 17 | 22 | 56 | 0.2 | | | | | | | | | | | | | | | |
| b）大町町 | 4069 | 2 | 0.05 | 217 | 5 | 15 | 76 | 126 | 217 | 0.4 | | | | | | | | | | | | | | |
| a）大町町 | 13360 | 81 | 0.61 | 2.695 | 20 | 388 | 923 | 3.162 | 2.695 | 2.9 | | | | | | | | | | | | | | |
| b）大町町 | 2283 | 8 | 0.35 | 450 | 20 | 80 | 188 | 450 | 2.9 | 3.5 | | | | | | | | | | | | | | |
| a）中里町 | 1684 | 0 | 0.00 | 30 | 2 | 11 | 13 | 30 | 0.7 | | | | | | | | | | | | | | | |
| 和歌町 | 30005 | 29 | 0.10 | 1.552 | 5 | 78 | 168 | 1.552 | 0.53 | | | | | | | | | | | | | | | |
| a）小国町 | 2199 | 132 | 6.00 | 3.299 | 150 | 358 | 1.000| 3.299 | 1.63 | | | | | | | | | | | | | | | |
| b）小国町 | 1488 | 66 | 4.44 | 1.058 | 71 | 63 | 180 | 856 | 1.058 | 4.2 | | | | | | | | | | | | | | |
| a）西町町 | 2201 | 11 | 0.50 | 35 | 2 | 8 | 11 | 10 | 35 | 0.4 | | | | | | | | | | | | | | |
| b）西町町 | 1482 | 0 | 0.00 | 10 | 1 | 1 | 1 | 10 | 1.0 | | | | | | | | | | | | | | | |
| 城山町 | 681 | 1 | 1.00 | 36.143 | 19.9 | 5243 | 11.122| 19.778| 36.143 | 2.87 | | | | | | | | | | | | | | | |

*: 住宅全建数は、各市町村発表のもの（12月6日 9:00現在）
*: 合計には山志村をいれていない。

8. 地震要素の配置

詳細調査を実施した建物の一覧を表1に示す。それぞれの建物の壁種をカウントし、現
行建築基準法の必要壁種に対する充足率を求めた。この際、荷重や千葉板の有無が不明
であるため、無開口壁を補率1として算出した。なお、図を拡幅するなどして荷重の配
置が判断のものは荷重の補率1として、無開口壁種に加えた。東西方向と南北方向
の壁量充足率を比較して図7に示した。各建
物の残存変形の誤差値と、当該変形方向の壁
量充足率を比較して図8に示した。なお、建
物の壁種方向、荷行方向が東西南北と必ずし
も一致していない場合、仮を考慮した経
路を南北方向に判断した。

壁量充足率は、東西方向よりも南北方向の
ほうが若干高いく、概ね増加的に近い。平成12
年兵庫県南部地震より被害を受けた建物
の壁量充足率と比較しても有意な差はない。
他地域であるために特に壁が多い建物が排
っているわけではない。また、壁量充足率と
残存変形は有意な関係が観察されない。

図7 現行建築基準法に対する壁量充足率

-16-
これは、耐力要素の仕様が正確でないこと、残留変形と地変時による経験変形が異なることによるものと考えられる。

図 8 壁量不足率と残留変形の関係

9. まとめ

平成 16 年新潟県佐渡地域による木造建築物の被害調査結果は以下のように纏められる。
・被災地域のうち山間部では地滑り、土砂崩落による被害が集中し、これに基づく建物の転倒、崩壊があった。
・平野部では作業小屋、車庫のみならず、比較的古い土塀壁を有する木造住宅なども中心に、倒壊、大破などの被害が数多く見られた。
・震動によって大きな被害を受けた建物は、河岸段丘の崩壊の地滑り地形等による入力地震動の増幅、壁面不足などが考えられる。
・市町村、集落ごとにみれば最も被害率が高いのは、川口町、魚沼市（旧岩之內町）新道島地区、次いで小千谷市東吉谷地区。
・1層をRC造とした高床式木造は概して被害軽微であるが、2層以上の木造部分の壁面不足などの設計不備が原因と想像される被害や、地盤変状による被害を受けた家屋は少なくなく存在する。
・小千谷市東吉谷市街地より東吉谷地区の方が被害はひどい。特に2階建ての2階が被害を受けている例が非常に多いのが目立つ。壁面では説明が付かないので、今後の分析が必要である。
・多雪地域に建つ木造住宅は高床式木造を含めても、必ずしも壁面が多いわけではない。

10. 引用文献
1) 国土交通省国土技術政策総合研究所・独立行政法人建築研究所: 平成 16 年新潟県中越地震建築物被害調査報告（速報）、p.29, 2004。
2) 気象庁ホームページ：http://www.seisvol.kishou.go.jp/eq/2004_10_23_niigata/event.html
3) 新潟県ホームページ：http://saigai.pref.niigata.jp/content/jishin/jishin_1.html
4) 積水ハウスほか: 日本木材学会大会研究発表要旨集、P.222, 2001。
1. はじめに 平成16年10月23日に発生した新潟県中越地震及びその後の余震によって数多くの木造住宅が被害を受けた。この地震による被害の全容を明らかにするための調査は、地震発生直後から日本建築学会北陸支部及び日本建築学会・災害委員会とこれに協力する大学により、また、国土交通省建築研究所によって精力的に行われてきた。森本総研研究部では、これらの機関の調査動向に注目しながら、どのような形で被害調査に寄与できるかを模索していき、建築サイドとしては異なる独自の視点で木造建物の被災状況を明らかにすることを目的として、地震発生10日後の11月3日より調査を開始した。本稿では、森本総研が実施した被害調査のうち、戸建て木造住宅に関する部分について報告する。

2. 戸建て木造住宅の調査概要 木造住宅の被災状況を算出するための調査については日本建築学会北陸支部により、また、木造住宅の被災状況が大きいと報じられた川口町竹町地区、田麦山地区、和南地区、旧田竹町地区の調査については他機関によりそれぞれ行われており、森本総研では地域の建築業の方がよくご対応いただいた小千谷市、十日市市、川西町にある木造建物26棟の被災状況調査と持続活動状況調査を実施した。調査した木造住宅の概要を表1に示す。調査期間は11月23日～25日及び12月22日～24日である。調査年数は、被災し直後のものから数年80年まで多岐にわたっている。また、調査した住宅のうち12棟が高基礎の住宅である。

表2に小千谷市、十日市市、川西町で10月に観測された震度5弱以上の地震を示す。小千谷市では震度5弱（震度6弱）以上の地震が15回（4回）、十日市市では2回（2回）、川西町では3回（2回）観測されている。

表1 調査した木造住宅の概要（調査日）

<table>
<thead>
<tr>
<th>1</th>
<th>調査地点</th>
<th>所在地</th>
<th>被災状況</th>
<th>練習生</th>
<th>記録品</th>
<th>記録項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度5中</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>2</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度5弱</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>3</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度5強</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>4</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度6弱</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>5</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度6強</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>6</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度7弱</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>7</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度7強</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>8</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度8弱</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>9</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度8強</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>10</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度9弱</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>11</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度9強</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>12</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度10弱</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>13</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度10強</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>14</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度11弱</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>15</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度11強</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>16</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度12弱</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>17</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度12強</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>18</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度13弱</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>19</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度13強</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>20</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度14弱</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>21</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度14強</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>22</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度15弱</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>23</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度15強</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>24</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度16弱</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>25</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度16強</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>26</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度17弱</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>27</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度17強</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>28</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度18弱</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>29</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度18強</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>30</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度19弱</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>31</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度19強</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>32</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度20弱</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
<tr>
<td>33</td>
<td>小千谷市西谷町</td>
<td>輪原</td>
<td>震度20強</td>
<td>棟間</td>
<td>棟間</td>
<td>棟間</td>
</tr>
</tbody>
</table>

18
3. 被害状況 小千谷市内の3棟(No.1, No.14, No.15)についてみると、震度7弱 appearanceに地震が観測された後、の地域にもかかわらず、図1〜7に示すような外壁
の割れや基礎の欠け、ボードの浮き、壁紙の切れ、内壁剥落等の被害にとどま
っていた。十日町市の被害調査対
象のうち被害の大きかったものには、地盤の変状による基礎の沈下や割れ、独立基礎の上で
の上台の水平移動、屋外に露出していた筋違いの外壁面が見られた。常時動的測定の結果については現在解析中である。

4. おわりに 被災された方々の一日も早い復興を心よりお祈り申し上げます。調査にご協力頂きました(株)カネタケ建設・宮
沢次夫様、新潟県建築士会中魚沼支部・波方雅則様(株)桑原工
務店・桑原宏一様に厚く御礼申し上げます。各機関で実施され
た調査の情報をお寄せ下さった方々に感謝いたします。

<table>
<thead>
<tr>
<th>月日</th>
<th>朝分</th>
<th>午前</th>
<th>午後</th>
<th>日時</th>
<th>朝分</th>
</tr>
</thead>
<tbody>
<tr>
<td>10月23日</td>
<td>19時56分</td>
<td>6強</td>
<td>6弱</td>
<td>6弱</td>
<td>6弱</td>
</tr>
<tr>
<td>10月23日</td>
<td>19時59分</td>
<td>5弱</td>
<td>4弱</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>10月23日</td>
<td>19時05分</td>
<td>5弱</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10月23日</td>
<td>19時07分</td>
<td>5弱</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10月23日</td>
<td>19時15分</td>
<td>5強</td>
<td>4弱</td>
<td>5弱</td>
<td>-</td>
</tr>
<tr>
<td>10月23日</td>
<td>19時34分</td>
<td>6弱</td>
<td>6弱</td>
<td>6弱</td>
<td>6弱</td>
</tr>
<tr>
<td>10月23日</td>
<td>19時36分</td>
<td>5弱</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10月23日</td>
<td>19時47分</td>
<td>5弱</td>
<td>4弱</td>
<td>4弱</td>
<td>4弱</td>
</tr>
<tr>
<td>10月23日</td>
<td>19時49分</td>
<td>5弱</td>
<td>4弱</td>
<td>4弱</td>
<td>4弱</td>
</tr>
<tr>
<td>10月24日</td>
<td>19時21分</td>
<td>5強</td>
<td>4弱</td>
<td>4弱</td>
<td>4弱</td>
</tr>
<tr>
<td>10月25日</td>
<td>19時09分</td>
<td>5弱</td>
<td>4弱</td>
<td>4弱</td>
<td>4弱</td>
</tr>
<tr>
<td>10月27日</td>
<td>19時40分</td>
<td>5弱</td>
<td>4弱</td>
<td>4弱</td>
<td>4弱</td>
</tr>
</tbody>
</table>

図1 No.1 全景
図2 No.1外壁の割れ
図3 No.1基礎の欠け
図4 No.1ボードの浮き
図5 No.14 全景
図6 No.14壁紙の切れ
図7 No.15内壁の剥落、ラスボードの落下

－19－
平成16年（2004年）新潟県中越地震による木造建物の被害

— 木造建物の地震被害調査について —

（森林総合研究所）平松 剛、新藤健太、宮武教、長尾博文、井邇裕史、齋藤正彦、杉本健一
（新潟県森林研究所）菅原弥寿夫、岩崎昌一

1．はじめに
2004年10月23日17時56分に新潟県中越地方を襲った本震（M6.8、最大震度7）と、直後からの余震によるM6前後の余震により、建築物や土木構造物に大きな被害が出た。（枠森林総合研究所）では、震災発生以降、数回におきべ被害調査を実施したが、本報告では、新潟県中越地方に発生された地震の規模の大きい木造建物を対象にした被害調査について報告する。

2．調査概要
2.1 調査の目的
1987年に建築基準法が改正され、木造に関する規定が緩和（高さ13m、軒高9mを超える大断面木造の設計ルートが確立）されてから、国内での木造建物の建築数は着実に増加し、1998年以降は年間350棟が建設されている。筆者らの調査では、新潟県内における1986年から2004年にかけての木造建物の建築実績は415年を13年で、これらの多くは公共性の高い木造であり、戸建住宅に比べて規模が大きくなり、斜めや揺れ等の外力が緩和されていることが多いのが特徴である。これらの木造建物のうち中越地方に発生したものを調査対象建物として2004年11月17日および12月16～17日に現地調査を行った。調査にあたっては、木造建物の防災対策を把握することを目的として、建物の概要把握、建物外部・内部の目視による被害調査、聞き取り調査、および建物近隣地域の住宅等の目視による被害調査を行った。
なお、木造建築家の資料1をもとに1952年から1982年にかけての中越地方での木造建物の建築実績を調査したが、現存するものは確認できなかった。
注1）大規模6件、平均2件、新築2件、老朽化1件、その他1件、計1件を含む。
2.2 調査建物所在地
調査建物は、長岡市、小千谷市、川口町、越路町、塩沢町、旧柳内町、旧小出町、旧大町町、旧衣笠町、旧入間木村の計11市町村に分布していた。各市町村で10月23日から11月10日の間に観察された数値を表1に示す。
2.3 調査建物
調査対象は木造のすべてもしくは一部の主要構造部分に構造用木造を使用した木造建物を構造用木造とし、戸建住宅は対象から除外した。調査対象建物は1986～2004年の間に建設された35棟で、うち27棟について現地調査を行った。調査建物の概要を表2に示す。新築の建物を構造用木造が8棟で、その他の建物はベイブレンドであった。また、建物の設計荷重は1.0～3.5mであった。なお、全調査を原則としたが、その事情により他の2棟については現地調査ができたなかった。
2.4 現地調査者
森林総合研究所 平松 剛、新藤健太、宮武教、長尾博文、井邇裕史、齋藤正彦、杉本健一、新潟県森林研究所 菅原弥寿夫、岩崎昌一

— 20 —
表1 調査地域の震度（気象庁発表） 10月23日〜11月10日に観測されたもの

<table>
<thead>
<tr>
<th>月日</th>
<th>10月22日</th>
<th>10月23日</th>
<th>10月24日</th>
<th>10月25日</th>
<th>10月26日</th>
<th>10月27日</th>
<th>10月28日</th>
<th>10月29日</th>
<th>10月30日</th>
<th>10月31日</th>
<th>11月1日</th>
<th>11月2日</th>
<th>11月3日</th>
<th>11月4日</th>
<th>11月5日</th>
<th>11月6日</th>
</tr>
</thead>
<tbody>
<tr>
<td>1時</td>
<td>5弱</td>
</tr>
<tr>
<td>2時</td>
<td>5弱</td>
</tr>
<tr>
<td>3時</td>
<td>5弱</td>
</tr>
<tr>
<td>4時</td>
<td>5弱</td>
</tr>
<tr>
<td>5時</td>
<td>5弱</td>
</tr>
<tr>
<td>6時</td>
<td>5弱</td>
</tr>
<tr>
<td>7時</td>
<td>5弱</td>
</tr>
<tr>
<td>8時</td>
<td>5弱</td>
</tr>
</tbody>
</table>

http://www.seism.kishou.go.jp/xp/2004_10_23_nigata_xwv.html

表2 調査した集成材建物の概要

<table>
<thead>
<tr>
<th>調査日</th>
<th>記号</th>
<th>用途</th>
<th>施工年</th>
<th>所在地</th>
<th>家族</th>
<th>使用時間</th>
<th>使用用途</th>
<th>基本対策</th>
<th>被害対策</th>
<th>接合方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>11月1日</td>
<td>A</td>
<td>事業所</td>
<td>1999</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月2日</td>
<td>B</td>
<td>事業所</td>
<td>2003</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月3日</td>
<td>C</td>
<td>事業所</td>
<td>2005</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月4日</td>
<td>D</td>
<td>事業所</td>
<td>2006</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月5日</td>
<td>E</td>
<td>事業所</td>
<td>2007</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月6日</td>
<td>F</td>
<td>事業所</td>
<td>2008</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月7日</td>
<td>G</td>
<td>事業所</td>
<td>2009</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月8日</td>
<td>H</td>
<td>事業所</td>
<td>2010</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月9日</td>
<td>I</td>
<td>事業所</td>
<td>2011</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月10日</td>
<td>J</td>
<td>事業所</td>
<td>2012</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月11日</td>
<td>K</td>
<td>事業所</td>
<td>2013</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月12日</td>
<td>L</td>
<td>事業所</td>
<td>2014</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月13日</td>
<td>M</td>
<td>事業所</td>
<td>2015</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月14日</td>
<td>N</td>
<td>事業所</td>
<td>2016</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月15日</td>
<td>O</td>
<td>事業所</td>
<td>2017</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月16日</td>
<td>P</td>
<td>事業所</td>
<td>2018</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月17日</td>
<td>Q</td>
<td>事業所</td>
<td>2019</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月18日</td>
<td>R</td>
<td>事業所</td>
<td>2020</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月19日</td>
<td>S</td>
<td>事業所</td>
<td>2021</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月20日</td>
<td>T</td>
<td>事業所</td>
<td>2022</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月21日</td>
<td>U</td>
<td>事業所</td>
<td>2023</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月22日</td>
<td>V</td>
<td>事業所</td>
<td>2024</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月23日</td>
<td>W</td>
<td>事業所</td>
<td>2025</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月24日</td>
<td>X</td>
<td>事業所</td>
<td>2026</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月25日</td>
<td>Y</td>
<td>事業所</td>
<td>2027</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
<tr>
<td>11月26日</td>
<td>Z</td>
<td>事業所</td>
<td>2028</td>
<td>旧木製</td>
<td>2階</td>
<td>全体</td>
<td>ベイプン</td>
<td>通路</td>
<td>通路</td>
<td></td>
</tr>
</tbody>
</table>

*本文著述の日は11月1日〜11月10日に調査を行った。

—21—
表3 調査した養生材であるおよび近隣地域の被害

<table>
<thead>
<tr>
<th>項目</th>
<th>記載内容</th>
<th>土壌の変化</th>
<th>土壌の変化の影響</th>
<th>土壌の変化の影響</th>
<th>土壌の変化の影響</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>B</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>C</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>D</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>E</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>F</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>G</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>H</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>I</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>J</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>K</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>L</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>M</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>N</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>O</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>P</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>Q</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>R</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>S</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>T</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>U</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>V</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>W</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>X</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>Y</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>Z</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
<tr>
<td>AA</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
<td>積算値 (%)</td>
</tr>
</tbody>
</table>

- 22 -
店舗兼事務所(A)：1998年築、旧六日町の中心部から北東へ約5 kmのところにあり、建物の東側を魚野川が流れる。2階建ての店舗棟と多目的ホール棟がT字型に配された建物である（写真A-1）。通路集柱の柱と矢張りの洗面室集柱の小屋根で構成され、これらボルトで接合されている（写真A-2～4）。集材の損傷は見られなかったが、店舗棟の階段室の壁や、多目的ホール棟の2階ホール入口の壁紙にやぶれやしわが生じていた（写真A-5）。地震時には営業中であり、テーブルからガラスが落ちて割れたりしたが、什器が転倒したり、窓ガラスが割れたり等の被害はなかったとのことであった。近隣では倉庫（土砂）で滑落の一部落ちが見られた（写真A-6）。
児童福祉施設(B)： 2003年築。旧大和町郊外の住宅街にある。建物の中央に玄関と吹き抜けのホールがあり、ホールの両側に保育室がある（写真B-1, B-2）。ホールは3ピッチアーチ構造で接合は鋼板接合・ボルト接合である（写真B-3〜5）。調査時は鉄筋が含まれて建物の損傷は特に見られなかったが、地震時にはホール入口の引戸がはずれ、正門が壊れたとのことであった。近隣にはRC高基礎の新しい住宅が多く、それらについても特に被害は見られなかった（写真B-6）。
店舗兼事務所(C)：1996年築。旧小倉町の中心から南東へ約2.5 km離れた公園内にあり、同公園内には公共の文化施設やグランド等がある。建物は平屋建てで、外周はRC造で、内部の柱、梁に集成材が使用されている（写真C-1〜4）。集成材に損傷は見られなかった。建物外壁のRC部に一部ひび割れが生じていた（写真C-5）。建物西側においてトイレ水槽との間の通路がうねり、敷き詰められた舗装ブロックが崩れ、マンホールの浮き上がりが生じていた（写真C-6）。また、隣接するトイレの奥根と当該建物の屋根が接触しており、橋が変形していた（写真C-7）。近隣の住宅は特に被害は見られなかった（写真C-8）。
写真 C-3 内部（外壁部の RC の柱（奥））

写真 C-4 集成材柱の接合部

写真 C-5 RC 外壁のひび割れ

写真 C-6 建物側の通路（舗装ブロックの崩れ
とマンホールの浮き上がり）

写真 C-7 屋根（隣接するトイレ棟の屋根（
左）と接触し、梯が変形している）

写真 C-8 近隣の住宅（被害は見られない）
体育館(D)： 1994年に築。旧湯之谷村役場から8 kmほど東の温泉街にある。RC造の建物で、屋根のみ集成材構造の方形屋根である（写真 D-1～3）。集成材を含めて建物の損傷は特に見られなかった。近隣では住宅のモルタル外壁のきれつ、築石のずれが見られた（写真 D-4）。
店舗兼事務所：2004年築。旧入花朵村の西部。ほぼ旧守門村との村域にある。建物の北側には大きな池があり、周囲は山に囲まれている。平屋建ての建物で柱、梁、小屋組に集成材が使用されており、部材同士の接合は異形鉄筋・エポキシ樹脂接合である（写真E-1〜4）。集成材や建物内部には特に被害は見られなかったが、木材外壁の縦目部分に一部ずれや浮きが生じていた（写真E-5）。ただし、これは地盤によるものかどうかはわからなかった。隣接する店舗では大走り部にきれつが生じていた（写真E-6）。
店舗兼事務所：2001年築。旧入江瀬村の西部、村役場の北約3 kmのところにある。平屋建て。平面は約12 m×12 mの正方形で、中央に集成材の円柱が立ち、その先端に屋根から梁をわたした方形屋根の建物である（写真F-1, F-2）。広い開口部が建物の南側部に偏って配置されている。集成材の接合は鋼板挿入・ドリフトピン接合である。集成材に損傷は見られなかったが、内部下地のボードに沿った壁紙のしおれ、ガラスコーディングの一部にはかげが生じていた（写真F-3）。また玄関ドアの縁が壊れたとのことだった。公園に至る道沿いの店舗や住宅は耐震危険度判定が実施されており、基礎土台の不揃い、基礎にきれいな生成、注意のものが数件あり、住宅が揺れた「危険住宅」もあった（写真F-4, F-5）。道路にきれいな多数生じており、調査建物付近から西は道路災害のため通行止めになっていた。店舗の防災では手数程度の石が転倒または水平回転していた。
倉庫(J)：1992年地震で長岡市の北東部にある工場内に建てられた倉庫で、工場(H),倉庫(I)と同じ敷地内にある。通直を形成する柱、梁で構成された壁のない建物で、接合部は鋼板補入・ボルト接合であるが、一部に合板ガセットが併用されている（写真J-1）。倉庫の長手方向は鋼板で構成される。鋼板の欠損は倉庫建物で梁を受ける柱の接合部に割れが一箇所見られた（写真J-2）。同敷地内の工場(H)では内装壁の石膏ボードに一部破損が見られた（写真J-3, J-4）。敷地内では建物の基礎の一部にきげつや、材料重用が使用されている（写真J-5）。地震当時は、材料の荷崩れや、製造装置の移動があったとのことであったが、調査時には平常通り稼働していた。

周辺は工業団地、水田、住宅地である。建物の敷地のすぐ脇を通る農道（未舗装）に敷地に沿って地表の隆起が生じており（写真J-6）、マンホールが10cmほど浮き上がっていた。近隣では、瓦が落ち、屋根にブルーシートをかけた住宅が目立った。
屋外ステージ（K）：1992年築。長岡市街北部の公園内にあり、同公園内には公共の文化施設がある。屋外ステージは両曲線柱アーチ4本を主要構造とした建物である（写真K-1〜3）。集成材を含めて建物の損傷は特に見られなかった。近隣の建物や地盤の被害も特になかった（写真K-4）。

写真K-1 長岡市の屋外ステージ（K）
写真K-2 ステージ内部
児童福祉施設（L）：1999年築。長岡市西部に造成された新築住宅街にある。一部2階建てのL字形の建物で、鉄骨構成の柱、梁と鋼板補强・ボルト接合による2階まで吹き抜けのオープンスペースがある（写真L-1～3）。集成材に損傷は見られなかったが、玄関や階段室の壁紙のモク、トイレ内の内壁ボードの一部剥落、給食室の土間コンクリートの細いひび割れが見られた（写真L-4）。また、モルタル外壁に幅0.7mm程度の細いひび割れが入っていた（写真L-5）。近隣の住宅は比較的新しいものばかりであるが、モルタル外壁のされつ、基礎のきわれ、塗膜の剥げ等が見られた（写真L-6～8）。また、塚周の隅地や盛土の崩れ等もあった。
店舗(M): 2003年築。長岡市南東部にある。一般住宅程度の規模の平屋建ての建物（写真M-1）。集成材の接合は鋼板挿入・ドリフトピン接合である。店舗内作業室の土間に細いひび割れが入ったばかりを被害は見られなかった（写真M-2）。店舗に隣接した建物（鉄骨造）では外壁が剥落しており（写真M-3）。近隣の住宅では、屋根瓦のくずれ、ブロック塀のきれつ、外壁モルタルのきれつや灯篭の落下が見られた（写真M-4〜6）。

写真M-1 長岡市の店舗(M)
写真M-2 作業室（土間コンクリートに細いひび割れ）
写真M-3 隣接する鉄骨造の建物（外壁の剥落）
写真M-4 近隣の住宅（屋根瓦のくずれ）
写真M-5 近隣の住宅（ブロック塀のきれつ）
写真M-6 近隣の住宅（外壁モルタルのきれつ）
文教施設(N)：2001年築。小千谷市の東部の山間にある。傾斜地を造成して建てられた2階建ての建物。平面計画は1．字型で、東西棟と南北棟が交わる隅部に玄関ホールが配置されており、それぞれ防火壁で隔てられている。被害は玄関ホール付近に集中しており（写真N-1）、玄関にポーチに配された集成材円柱3本すべてに柱脚から柱頭にかけての割裂破壊（写真N-2）と柱の傾斜がみられた。玄関側のガラスの破損や玄関ホールと南北棟間の壁、床、基礎の隙間が観察された（写真N-3～6）。建物内では南北棟2階腰壁の集成材柱1本に割れが生じていたが（写真N-7）、玄関棟2階や東西棟2階では集成材に損傷が見られなかった（写真N-8～10）。玄関脇の南北棟壁の窪業系サイディングの破損、床基礎、床下土コンクリート、犬走りのきせつが観察された。玄関、南北棟前のアスファルトにはいくつもきせつ、盛り上がりが観察された。建物同側の地面が陥没しており（写真N-11、N-12）、特に建物北側のグランドラートは一部で地盤が大きく沈み、いくつもの地割れが生じていたことから（写真N-13）、地盤の変動が建物の変形や損壊に関係している可能性が考えられた。近隣地域では、住宅の外壁の剥落、住宅1階部分の変形、基礎のきせつ、道路のきせつが観察された（写真N-14～16）。基底面のほとんどの軸側、落差している等、大きな被害が観察された。また建物への至る国道沿いの山や建物同側の山では斜面の崩壊が多く観察された。
写真 N-5 玄関棟床下（布基礎のきれつ、土間コンクリートとの間に関じたすき間）

写真 N-7 南北棟 2階教室（集成材柱の割れ）

写真 N-9 東西棟 2階廊下（可動式間仕切り壁がレールから外れている）

写真 N-10 東西棟 2階教室
写真 N-11 南北棟北側の地盤の沈下

写真 N-12 南北棟西側の地盤の沈下

写真 N-13 建物北側のグランドの地割れと地崩れ（建物のすぐ近くまで地割れが生じている）

写真 N-14 近隣の住宅（1階部分が大きく傾いている）

写真 N-15 近隣の神社（雨戸や障子ははずれているが、建物に大きな被害はない）

写真 N-16 近隣の道路のきれつ
店舗（O）：1995年築。長岡市街北東部にあり、近隣は店舗や住宅街である。外観調査では建物の被害は特に見られなかった（写真O-1）。隣接した店舗前の駐車場は瓦の落下の恐れがあるため、駐車禁止となっていた。そのほか、当該建物のそばの電信柱の周囲の地面の陥没や、送電線の鉄塔の基礎のきりつ、一部破損が見られた（写真O-2〜4）。

写真O-1 長岡市の店舗（O）
写真O-2 隣接する店舗（屋根瓦の落下の恐れがある）
写真O-3 隣接する電信柱（周囲の地面が陥没）
写真O-4 隣接する送電線鉄塔（基礎の一部破損）
店舗兼事務所

写真 P-1 長岡市の店舗

写真 P-2 店舗内部

写真 P-3 集成材アーチ部屋内の割れ

写真 P-4 店舗側面の一部の割れ（左側のマンホールが浮き上がっている）
事務所兼倉庫（Q）：1990年築。長岡市鶴北部にあり、近隣は店舗や住宅街である。建物西側の敷地脇を柿川が流れ、1階が事務所と倉庫、2階が倉庫の建物で、1階事務所の四隅にはRC壁が配されている（写真 Q-1～4）。柱、梁に剛性材が使用され、接合には金物とボルトが用いられている（写真 Q-5）。集成材には特に損傷は見られなかったが、事務所構のRC壁の一部が剥離していた。建物の基礎の一部にささが生じているほか、建物と建物間の犬走りの間すき間に生じていた（写真 Q-6、Q-7）。建物下の地盤は杭による補強がされているが、犬走り部は補強がされていないため、柿川の方向への地盤がずれ、それにによってすき間が生じたものと推察される。近隣の住宅ではモルタル外壁の亀裂、タイルの剥落、コンクリート階段部分のきれつ、一部破壊、基礎のがれつおよび破壊、屋根瓦の落下等の被害が見られた。
ホール(R)：1992年築。長岡市街の中心部にある。屋根のみ集成材構造のRC造の建物（写真R-1〜3）。集成材を含めて、建物の被害は特に見られなかった。

写真 R-1 長岡市のホール(R)

写真 R-2 内部

写真 R-3 集成材の接合部
文教施設(S)：2003年築。越路町のほぼ中央の山すそにある。8つの防火区画で構成される建物でそのうち3区画が2階建てで、そのほかは平屋建てである。（写真S-1, S-2）。通直のカリマツ集成材が柱、梁、屋根に使用され、接合は鋼板熱入・ボルト接合である。（写真S-3, S-4）。耐震調査の範囲では集成材の損傷は見られなかった。建物内では、防火区画の境界に設けられたエキスパンションジョイント部でアルミ製カバーの落ち方が多く見られた（写真S-5）。また、内装化粧パネルや天井材の剥落、破損、壁紙の破損も見られた（写真S-6〜8）。建物外側では2階建ての特別教室棟の防火壁面のアルミ製の板が一部変形、破損しているほか、地盤の沈下や補強ブロックのくすれ、マンホールの浮き上がりが見られた（写真S-9, S-10）。敷地内にあるRC造、鉄骨造屋根の体育館では、一部窓ガラスの破損や、天井材の落下、損傷があり、その周囲ではアスファルトのきれつ、地盤の陥没が見られた（S-11〜13）。調査建物に近接したRC造の食堂では天井材が多く落下していた。近隣では、住宅の戸建の剥落、屋根瓦の落下、神社の瓦の落下、石垣の崩壊、墓石の落下のほか、歩道の陥没が見られた（S-14〜16）。

写真S-1 越路町の文教施設(S)（教室棟・平屋）
写真S-2 特別教室棟（2階建て）
写真S-3 特別教室棟1階
写真S-4 特別教室棟1階（集成材柱、梁の接合部）
写真 S-5 特別教室棟 2階廊下（エクスパンションジョイント部のアルミ製カバーが落下し、床のレベル差も生じている）

写真 S-6 特別教室棟 2階廊下（天井材が落下し、小屋形が露出している）

写真 S-7 教室棟・オープンスペース（内装壁の剥落）

写真 S-8 教室（回廊の破壊、壁材の剥落）

写真 S-9 特別教室棟の防火壁（アルミ製の板が変形している）

写真 S-10 中庭（建築ブロックが崩れ、マンホールの浮き上がりが生じている）
写真 S-11 同教地内のRC造体育館（窓ガラスが割れ、天井材が一部落下している）

写真 S-12 同体育館（アスファルトの剥がれ）

写真 S-13 敷地内の地面の膨張

写真 S-14 近隣の住宅（屋根瓦が剥がれた住宅が見られる）

写真 S-15 近隣の神社（石垣の崩壊）

写真 S-16 近隣の地面の膨張

福利用生施設(T)：2004年築。文教施設(S)に隣接した平屋建ての建物。外観調査では集成材を含めて建物には特に被害は見られなかった。
2004年度、川口町役場から南に約1 kmのところにある一部2階建ての切妻屋根の建物（写真U-1）。柱、梁、小屋組、筋かいの接合は木製柱と鋼板間をドリフトビン接合であるが、柱と筋かいの接合は鋼板補入・ボルト接合であった（写真U-2〜U-4）。異常気候に近いが、建物内の集成材に損傷は見られず、また、建物側面のポーチに使用された樹脂集成材にも損傷はなかった。内装壁のスギ板、天井に使用されたO SB・発泡樹脂のサンドイッチパネルの損傷も見られなかった。建物側面の欠損部の補修に数本のきさつがあった（写真U-6）。地質当時は住居中であり、立っていられないほどゆるで、商品もくずれたとのことであった。近隣では住宅の瓦の落下や塩害の剥落、倉庫の基礎ブロックの破壊が見られた（写真U-7）。
写真 U-5 建物西方前走り部のきれい
写真 U-6 店舗前駐車場（アスファルトのきれい）
写真 U-7 近隣の住宅（屋根瓦の落下，漆喰の剥落）

福利厚生施設（V）：1999年築。川口町役場から東に1kmほど離れた丘陵地を造成した公園内にある。隣接して宿泊施設，温浴施設がある。外観調査では建物には特に被害は見られなかった（写真 V-1）。隣接する建物そばの盛土部分が崩落していた（写真 V-2）。
体育館(W)：1995年築。旧塩沢之內町の中心部にある。屋根梁に曲線集成材を使用したRC造の建物（写真W-1）。外観調査では建物の被害は特に見られなかった。夜間であったため、近隣地域の調査はできなかった。

事務所兼倉庫(X)：1987年築。旧塩沢町役場から南へ約3kmのところにある。一部2階建ての建物。柱、屋根柱には製材が使用され、梁に集成材が使用されている（写真X-1、X-2）。地代は鋼製金物とボルトによる接合である（写真X-3）。集成材を含めて建物の被害は特に見られなかった。また近隣の地域においても特に被害は見られなかった。

写真W-1 旧塩沢之內町の体育館(W)

写真X-1 塩沢町の事務所兼倉庫(X)

写真X-2 倉庫内部
屋外ステージ (Y)：1990年築、旧塩沢町仏場近くの公園内にある。RC造の壁の上に複合集成材、通直集成材を使用して壁と高い屋根が構成されている（写真 Y-1〜3）。集成材を使用して建物の被害は特に見られなかった。また隣接したスギ集成材を用いた公共木造建物にも特に被害はなかった。

写真 Y-1 塩沢町の屋外ステージ (Y)
写真 Y-2 集成材アーチ車部の接合部
写真 Y-3 ステージ屋根
文教施設(Z)：1994年築、旧大和町の西部の山間にある文教施設で、傾斜地を造成して建てられた2階建て、一部吹き抜けの建物。山側（南東側）に建物と体育館(AA)が一堂に並んで建っており、谷側（北西側）にグランドがある（写真Z-1）。主要構造材にはベイマツの丸太や製材、集成材が使用され、接合は姿受け金物とボルトによる接合である（写真Z-2、Z-3）。集成材を含めて建物の損傷は特に見られなかった（写真Z-4）。ベイマツ集成材の3ヒンジアーチ構造の体育館(AA)にも特に損壊は見られなかった（写真Z-5）。グランド周辺の盛土が崩れ、グランド周囲に配された保護柵が谷側へずれており、フェンスの支柱も一部谷側へ傾いていた（写真Z-6）。調査時にはすでに補修されていたがグランドに数本、地割れが生じていたとのことであった。

また、当該建物から2kmほど離れた十日町市のRC造文教施設では、建物南側の地面にさつ、隙間があり、斜面の崩落の危険性もあることから地質調査が行われ、「危険」と判定されており、調査時は休校していた。地震による被災と児童数の減少から2005年3月をもって休校となるとのことであった。
4. おわりに

新潟県中越地方にある27棟の集成材建物の被害調査を行った。本震、余震により建物には大きな入力があったと考えられるが、一部の建物を除いて主要構造部の集成材に被害は認められなかった。集成材に損傷を受けた建物では、基礎や大梁部のきれいが生じており、マンホールの浮き上がりも見られたこと。さらに、集成材の損傷が最も大きかった建物では周囲の地盤が大きく崩れていたことから、集成材の損傷には地震時の入力だけでなく、地盤の変動も大きく関わっていたものと考えられる。個々の集成材建物の被災についての原因を明らかにするためには、建物の設計資料等を参考にして詳細な調査が必要であると思われる。

最後に、被災された方々に心からお見舞いを申し上げます。また、本調査の実施にあたり資料提供および現地調査にご協力いただいた株式会社志田木工店、新潟県長岡地域振興局、小千谷市教育委員会をはじめとする関係自治体、日本集成材工業協同組合、小杉土建工業株式会社、調査対象建物関係各位に感謝いたします。

文献
1) 神谷文夫、鈴木雅太郎、杉木健一、青木慶治、木材工業、60(1), 33-38 (2005)
2) 株式会社志田木工店資料
3) 三井物産ハウステクノ株式会社資料
4) 三井木材工業株式会社（現・三井物産ハウステクノ株式会社）構造用集成材（アーチ材）納入実績表（昭和 57 年 1 月現在）
1 はじめに

平成16年10月23日午後5時56分ごろ新潟県中越地方においてマグニチュード6.8(気象庁発表)の地震
が発生した。この地震で川口町において、震度7が観測され、また、震度6の余震が数回発生し、大きな
被害をもたらした。

平成16年11月20日～22日までの期間に、主に以下の地域について被害調査を実施した。

1. 須賀川市富山地区
2. 川口町武道館地区
3. 川口町田原山地区

上記のうち川口町武道館地区は本県の観測地に近い場所であり、地震の被害の大きかった地域の一つであ
る。本報告では武道館地区のある民家1棟について実施をし、ケーススタディとして今後の大震災被害の検討
した。

2 建物概要

2.1 概観

船橋造の民家が多く、当該の建物のもとで
の例である。建物の応急危険度判定は「危険
（赤）」となっている。主に土壁の剥離が目立っ
た。また、目視による観察では、1階部分は残
留壁の状態がほとんどなく、2階部分は梁側に傾い
ていることが見てとれた。

柱は断面4寸角のスギを主に用いていた。下
層の部分は3寸角のスギの柱。大黒柱は6
寸角のケヤキ材を用いていた。その他、大黒柱
と同じ柱材にスギの6寸×4寸の通柱と思し
べき材を用いていた。また、断面の断面積から通
柱であると判断したのはこれらの3本の柱で、
その他の柱については通柱、貫柱の区別をつかなかった。

土壁の下地はこの地方特有の手法であろうか、茅のような材を用いていた。また、貫は約2尺間隔で3段で
あった。
2.2 被災状況

次に建物内部の被害状況について示す。

図 4,5
1 階の床の間部分は建物から張り出した形で配されているが、地震によってその壁が倒壊している。

図 6,7
1 階には耐力要素としての土壁が少ない。また、破壊の状況としては貫通よりも上に塗られている中塗りあるいはそれに相当する層が剥がれ落ち、貫通きりぎしの状態になっている。

図 8
2 階小壁部分の損傷の例である。腐食が抜け外れており、建物傾斜の大きさを物語っている。

図 9,10
大黒柱の損傷の例である。2 階床高さにおいて曲げ破壊している。

図 11
剥がれ落ちた土壁。竹材ではなく著のようなものを下地として用いていることが分かる。

図 12
小屋組には貫などの構造要素としての横架材がなく、水平構面における耐性は低そうである。
2.3 建物重量概算

建物重量を実測の結果から推定していく。

1. ススキは比重 0.38 とする。
2. ケヤキは比重 0.69 とする。
3. 土壁重量は厚さ 4cm の土壁を 75kg/m² とし、1cm 厚みが増每に 15kg/m² 増とする。ただし、軸組を
 含まない。
4. 根元、天井等の単位重量は 建築基準法第 84 条に従うものとする。

2.3.1 屋根重量

（1）（6370 + 900 × 2）× （8189 + 900）= 742,653 (kg)

とし、屋根組を 4 寸と仮定する。また、木柱は約 455mm 間隔で配されており、合計 38 本であった。断面を 2 寸
角とすると、1本あたりの重量は
\[
60^2 \times 4085 \times \frac{\sqrt{116}}{10} \times 0.38 \times 10^{-6} = 6.018\ldots
\]
\[
\approx 6\text{ (kg)}
\]
(2)

と、約 6kg である。
\[
6 \times 38 = 228\text{ (kg)}
\]
(3)

■母屋 5寸径の丸太として近似する。
\[
(2.5 \times 30)^2 \times \pi \times 9090 \times 0.38 \times 10^{-6} = 61.0407\ldots
\]
\[
\approx 61\text{ (kg)}
\]
(4)

この1本 61kg の丸太が7本あるので、
\[
61 \times 7 = 427\text{ (kg)}
\]
(5)

となる。

■壁梁・軸 8寸径の丸太として近似する。
\[
(4 \times 30)^2 \times \pi \times (910 \times 6) \times 0.38 \times 10^{-6} = 93.8617\ldots
\]
\[
\approx 94\text{ (kg)}
\]
(6)

これが4本あるので、
\[
94 \times 4 = 376\text{ (kg)}
\]
(7)

■中梁 9寸径の丸太として近似する。
\[
(4.5 \times 30)^2 \times \pi \times 9090 \times 0.38 \times 10^{-6} = 197.772038\ldots
\]
\[
\approx 198\text{ (kg)}
\]
(8)

■瓦
\[
742.653 \times \frac{\sqrt{116}}{10} \times 65 - 5199.1\ldots
\]
\[
\approx 5200\text{ (kg)}
\]
(9)

瓦の総重量は約 5200kg である。
以上より総重量は
\[
228 + 427 + 376 + 198 + 5200 = 6429\text{ (kg)}
\]
(10)

以上より求めた建物重量を表1-2に示す。

3 建物剛性の推定

貫を3段に分ける壁の剛性を考える。（図13）
表1 部材重量

<table>
<thead>
<tr>
<th>部材名</th>
<th>寸法 (mm)</th>
<th>単位重量 (kg)</th>
<th>数量</th>
<th>重量 (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>柱</td>
<td>120×120×2625</td>
<td>14.36</td>
<td>30</td>
<td>430.92</td>
</tr>
<tr>
<td>大型柱</td>
<td>170×170×2625</td>
<td>52.35</td>
<td>1</td>
<td>52.35</td>
</tr>
<tr>
<td>通柱</td>
<td>170×170×2625</td>
<td>20.36</td>
<td>2</td>
<td>40.7</td>
</tr>
<tr>
<td>全面壁</td>
<td>910×70×2625</td>
<td>266.7</td>
<td>22</td>
<td>6036.3</td>
</tr>
<tr>
<td>厚壁</td>
<td>910×70×720</td>
<td>78.62</td>
<td>28</td>
<td>2201.5</td>
</tr>
<tr>
<td>天井 (平壁)</td>
<td>910×910</td>
<td>8.281</td>
<td>84</td>
<td>695.60</td>
</tr>
<tr>
<td>床 (2層)</td>
<td>910×910</td>
<td>28.98</td>
<td>62</td>
<td>1767.99</td>
</tr>
</tbody>
</table>

表2 部材重量

<table>
<thead>
<tr>
<th>部材名</th>
<th>寸法 (mm)</th>
<th>単位重量 (kg)</th>
<th>数量</th>
<th>重量 (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>柱</td>
<td>120×120×2625</td>
<td>14.36</td>
<td>27</td>
<td>387.83</td>
</tr>
<tr>
<td>大型柱</td>
<td>170×170×2625</td>
<td>52.35</td>
<td>1</td>
<td>52.35</td>
</tr>
<tr>
<td>通柱</td>
<td>170×170×2625</td>
<td>20.36</td>
<td>2</td>
<td>40.7</td>
</tr>
<tr>
<td>全面壁</td>
<td>910×70×2625</td>
<td>266.7</td>
<td>27</td>
<td>7739.6</td>
</tr>
<tr>
<td>厚壁</td>
<td>910×70×720</td>
<td>78.62</td>
<td>28</td>
<td>2201.5</td>
</tr>
<tr>
<td>天井</td>
<td>910×910</td>
<td>8.281</td>
<td>61</td>
<td>505.14</td>
</tr>
<tr>
<td>厚壁</td>
<td>910×910</td>
<td>8.281</td>
<td>61</td>
<td>505.14</td>
</tr>
<tr>
<td>厚壁</td>
<td></td>
<td></td>
<td></td>
<td>6429</td>
</tr>
</tbody>
</table>

![図13 場の力学モデル](image)

![図14 モーメント分布](image)

3.1 部材の曲げ変形による架構のたわみ

積雪部の回転による変形を考慮した場合、架構の応力分布は図14のようになる。このとき、柱の曲げ変形による架構のたわみはへ

57
\[\delta_s = \sum_{i=1}^{n} \frac{M_i L_i^2}{6E I} \]
\[= \frac{2}{3EI} \left[307 \times 570^2 + 263 \times \left(\frac{689}{2} \right)^2 + 211 \times \left(\frac{689}{2} \right)^2 + 270 \times \left(\frac{700}{2} \right)^2 + 251 \times \left(\frac{700}{2} \right)^2 + 319 \times 560^2 \right] \]
\[= 1.925 \times 10^{-3} \text{ (mm/N)} \]

と表せる。ただし、反曲点は中点として近似してある。
一方、鋼の曲げ変形による架橋のたわみ \(\delta_s \) は、

\[\delta_s = \frac{6}{3EI} \left(570 \times 455^2 \right) - 1.115 \times 10^{-3} \text{ (mm/N)} \]

よって、このときの架橋の剛性を \(K_f \) とすると、

\[K_f \left(\frac{2510}{\delta_s + \delta_b} \right) = 8.26 \times 10^6 \text{ (N/rad)} \]

3.2 柱-貫経合部の回転による架橋のたわみ

柱-貫経合部において負荷されるモーメント \(M_{ex} \) は、めり込みによって抵抗するもの \(M_{ex} \) と、まきつによって抵抗するもの \(M_{ex} \) に分けることができる。それぞれは、

\[M_e = M_{ex} + \frac{\beta + \theta}{\beta + \theta_e} M_{ex} \]
\[M_f = M_{ex} + \frac{\beta + \theta}{\beta + \theta_e} M_{ex} \]

と表せ、

\[M_{ex} = M_e + M_f \]

である。ここで、\(M_{ex}, M_{ex}, \beta \) はそれぞれ、貫経（\(h_e \)）、負荷（\(h_e \)）、貫経の部分圧縮一次剛性（\(C_{ex} \））の部分における初期変形応力（\(C_{ex} \））が負荷を用いて以下の式で表す。

\[M_{ex} = \frac{1}{6} h_e \sigma_y \]
\[M_{ex} = \frac{1}{4} h_e h_b \sigma_y \]
\[\beta = \frac{C_{ex}}{h_e h_b} \]

また、弾性破壊変形角（\(\theta_e \)）は、

\[\theta_e = \frac{Z_{0e} f_{0e}}{x_{e1} E_1 \sqrt{C_{ex} C_{ex}} C_{ex} C_{ex}} \]

\[\theta_e = -58 \]
と表すことにより

\[C_x = 1 + \frac{2Z_0}{3x_p} \left(2 - \exp \left(\frac{3y_p}{2Z_0} \right) - \exp \left(-\frac{3y_p}{2Z_0} \right) \right) \]

(25)

\[C_y = 1 + \frac{2Z_0}{3y_p} \left(2 - \exp \left(\frac{3x_p}{2Z_0} \right) - \exp \left(-\frac{3x_p}{2Z_0} \right) \right) \]

(26)

\[C_{zm} = 1 + \frac{4Z_0}{3x_p} \]

(27)

\[C_{ym} = 1 + \frac{4Z_0}{3y_p} \]

(28)

今回、柱-貫入部の回転剛性を考えるにあたって、この部分における回転変位応力は、経年変化を考慮して \(C_0 = 0 \) と仮定する。このとき、\(\beta \) も 0 となる。

| 表 3 柱-貫入部における各寸法 (単位:mm) |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| \(x_p \) | \(z_1 \) | \(y_2 \) | \(h_1 \) | \(Z_0 \) | \(h \) | \(h_c \) |
| 120 | 910 | 0 | 120 | 0 | 120 | 21 | 120 |

また、\(n = 5 \), \(E_1 = \frac{1}{3} E_{ff} \) とし、\(f_{m} = 2.4 \times 1 \) 最大許容圧縮応力度とする。

| 表 4 各値 |
|-------|-------|-------|-------|-------|-------|
| \(E_1 \) | \(f_m \) | \(C_{zm} \) | \(C_{ym} \) | \(C_y \) | \(\sigma_y \) | \(M_{xy} \) |
| 7.0 | 2.0 | 2.33 | 2.57 | 1.67 | 1.00 | 2.53 | 1.08 \times 10^2 | 1.27 \times 10^2 |

\[M_{xy} = 2 M_{xy} \frac{\theta}{\theta_0} \]

(29)

\[= 2.322 \times 10^2 \times 10^2 \theta \]

(30)

よって、柱-貫入部における回転剛性 \((R_h) \) は \(R_h = 2.35 \times 10^2 \) (Nm/rad.) となり、接合部の回転による架構の変形量は

\[K_m = \frac{R_h}{570} = 4.13 \times 10^4 \]

(N/rad)

(31)

3.3 土膚の剛性 \((K_m) \)

木立に組竹を用いた下地ではないので、今までの実験結果をそのまま利用することは出来ないが、土膚の壁厚をい相当の土膚を想定して、単位長さあたりの強度を 1960N とする。これを变形角 1/120rad. での強度と仮定すると。

\[K_m = 1960 \times 0.91 \times 120 = 2.140 \times 10^6 \]

(N/rad)

(32)

となる。
4 建物の動的特性

一般に質点系の自由振動は質量マトリックス \([M]\)，減衰マトリックス \([C]\)、剛性マトリックス \([K]\) を用いて次式のように表せる

\[
[M][\ddot{x}] + [C][\dot{x}] + [K][x] = 0
\]

と表す。ここで、図17のような2質点系の自由振動をモデルとして振動解析の振動数を計算する。振動数は、式(36)の解を

\[
x = \{u\} e^{\omega t}
\]

とおいて、

\[
(\omega^2[M] + [K])\{u\} = 0
\]

を満たす \(\omega\) を求める。これが \(\{u\} = \{0\}\) 以外の解を持つためには

\[
\omega^2[M] + [K] = 0
\]

とおれば良い。以上、\(m_1, m_2, k_1, k_2\) に値を代入して \(\omega\) を求めると、計算方向では、

\[
\omega^2 = \frac{41.0}{324.5} = 0.127
\]
なる \(w > 0 \) であることから、この建物の横間方向の固有周期 \(T_w \) は、

\[
\begin{align*}
T_1 & = 1.0 \text{s} \quad (41) \\
T_2 & = 0.3 \text{s} \quad (42)
\end{align*}
\]

である

同様にして航行方向の固有周期 \(T_r \) は

\[
\begin{align*}
T_r & = 1.0 \text{s} \quad (43) \\
T_r & = 0.4 \text{s} \quad (44)
\end{align*}
\]

である

固有モードは

\[
\{ -\omega^2 [M] + [K] \} [u] = \{ 0 \}
\]

\[
\begin{align*}
\{ -\omega^2 [M] + [K] \} [u] &= \left\{ -\omega^2 \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} + \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix} \right\} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\
&= -\omega^2 m_1 \begin{bmatrix} k_1 + k_2 \\ -k_2 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\end{align*}
\]

より、

\[
\frac{m_2}{m_1} \frac{-\omega^2 m_1 + k_1 + k_2}{-\omega^2 m_2 + k_2} = \frac{k_2}{k_2}
\]

となる

横間方向、航行方向についてそれぞれのモードを求めると、

■横間方向

\[
\begin{align*}
\frac{m_2}{m_1} &= -\frac{41.0 \times 12.44 + (1.67 + 1.34) \times 10^3}{1.67 \times 10^3} = 1.4969 \ldots \quad (49) \\
\approx 1.5
\end{align*}
\]

■航行方向

\[
\begin{align*}
\frac{m_2}{m_1} &= -\frac{324.5 \times 12.44 + (1.67 + 1.34) \times 10^3}{1.67 \times 10^3} = -0.6148 \ldots \quad (51) \\
\approx -0.6
\end{align*}
\]
\[
\frac{\nu_{02}}{\nu_{01}} = \frac{-37.2 \times 12.44 + (1.50 + 1.22) \times 10^3}{1.50 \times 10^3} = 1.5048 \ldots (53)
\]

\[
\frac{\nu_{02}}{\nu_{01}} = \frac{-292.4 \times 12.44 + (1.50 + 1.22) \times 10^5}{1.50 \times 10^3} = -0.6246 \ldots (56)
\]

となる。

図 16 1 次モード
図 17 2 次モード

5 限界耐力計算による評価

5.1 各層の回元力特性

1 層の回元力特性 \(K_1 \) および 2 層の回元力特性 \(K_2 \) はそれぞれ

\[
K_1 = 3.3 \times 10^6 \quad (N/\text{rad}) \quad (57)
\]

\[
K_2 = 4.1 \times 10^6 \quad (N/\text{rad}) \quad (58)
\]

ここで、降伏変形角を \(1/60 \) と仮定してそれぞれの層の荷重-変形角関係を考える

\[
P_{01} = 3.3 \times 10^6 \times \frac{1}{60} = 5.50 \times 10^4 \quad (N) \quad (59)
\]

\[
P_{02} = 4.1 \times 10^6 \times \frac{1}{60} = 6.83 \times 10^4 \quad (N) \quad (60)
\]

\[
P_{31} = 3.3 \times 10^6 \times \frac{1}{60} = 5.50 \times 10^4 \quad (N) \quad (61)
\]

\[
P_{32} = 4.1 \times 10^6 \times \frac{1}{60} = 6.83 \times 10^4 \quad (N) \quad (62)
\]
表 6 各変形角におけるそれぞれの層の発元力

<table>
<thead>
<tr>
<th></th>
<th>1/120</th>
<th>1/60</th>
<th>1/30</th>
<th>1/15</th>
<th>1/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_i (kN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_{ni} (kN/m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h_i (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q_i (kN) 27.5 55.0 55.0 55.0 55.0
K_{ni} (kN/m) 1100 1100 550 275 183
h_i (cm) 300

図 18 各層の発元力特性

■各ステップにおける変形角
ここでは変形角 1/120, 1/60, 1/30, 1/15, 1/10rad のそれぞれの場合についての特性値を求めるために用いる。第 n ステップにおけるi 層の相対変位 δ_{ni} は

$$\delta_{ni}^{(1)} = \frac{\delta_{ni}^{(1)}}{\delta_{ni}} \times \frac{\delta_{ni}^{(1)}}{\delta_{ni}}$$

$$\delta_{ni}^{(m)} = \left(\delta_{ni}^{(1)} - \delta_{ni}^{(1)}\right) \times \frac{\delta_{ni}^{(1)}}{\delta_{ni}} \times \frac{\delta_{ni}^{(m)}}{\delta_{ni}} \times \delta_{ni}^{(m)}$$

と表現する。ここで、$A_{ni}^{(1)}$ は第 n ステップにおけるi 層の等価剛性であり、$A_{ni}^{(m)}$ は第 $n-1$ ステップにおいて求めた $(i-1)$ 層間変位を満たす変位点のうち、最小の変位点でのi 層の等価剛性である。

なお、以下の式のn は変位ステップをそれぞれ表す。

1. 1 層の変形角が 1/120 のとき

$$\delta_{i1}^{(1)} = \frac{300}{120} - 2.5 \text{ (cm)}$$

$$\delta_{i2}^{(1)} = \delta_{i1}^{(1)} \times \frac{n_2}{n_1} = 3.5 \text{ (cm)}$$

−63−
2. 1階の変形角が1/60のとき

\[\delta_1^{(0)} = \frac{300}{60} = 5.0 \text{ (cm)} \] \hspace{1cm} (67)

\[\delta_2^{(0)} = (\delta_1^{(0)} - \delta_2^{(0)}) \times \frac{\delta_1^{(0)}}{\delta_1^{(0)}} \times \frac{k_2^{(0)}}{k_2^{(0)}} + \delta_2^{(0)} = 6.384... \approx 6.4 \text{ (cm)} \] \hspace{1cm} (68)

3. 1階の変形角が1/30のとき

\[\delta_1^{(3)} = \frac{300}{30} = 10.0 \text{ (cm)} \] \hspace{1cm} (69)

\[\delta_2^{(3)} = (\delta_1^{(3)} - \delta_2^{(3)}) \times \frac{\delta_1^{(3)}}{\delta_1^{(3)}} \times \frac{k_2^{(3)}}{k_2^{(3)}} + \delta_2^{(3)} = 11.394... \approx 11.4 \text{ (cm)} \] \hspace{1cm} (70)

4. 1階の変形角が1/15のとき

\[\delta_1^{(4)} = \frac{300}{15} = 20.0 \text{ (cm)} \] \hspace{1cm} (71)

\[\delta_2^{(4)} = (\delta_1^{(4)} - \delta_2^{(4)}) \times \frac{\delta_1^{(4)}}{\delta_1^{(4)}} \times \frac{k_2^{(4)}}{k_2^{(4)}} + \delta_2^{(4)} = 21.394... \approx 21.4 \text{ (cm)} \] \hspace{1cm} (72)

5. 1階の変形角が1/10のとき

\[\delta_1^{(5)} = \frac{300}{10} = 30.0 \text{ (cm)} \] \hspace{1cm} (73)

\[\delta_2^{(5)} = (\delta_1^{(5)} - \delta_2^{(5)}) \times \frac{\delta_1^{(5)}}{\delta_1^{(5)}} \times \frac{k_2^{(5)}}{k_2^{(5)}} + \delta_2^{(5)} = 31.391... \approx 31.4 \text{ (cm)} \] \hspace{1cm} (74)

5.2 1層点系への約束

2層点系での振動を1層点系での振動に見立てて構造の動的特性を評価する。

地震動によってN層建物の1層が質量m_1の質点として表され、地震動によって基準位置からδ_1だけ動いた場合を考える。このN層の建物を質量M_1の1質点のモデルで表し、この質点の変位をΔとするとき

\[M_1 = \sum m_i \delta_i^2 \] \hspace{1cm} (75)

\[\Delta = \sum m_i \delta_i^2 \sum m_i \] \hspace{1cm} (76)

と表される。このとき第1層のせん断力Q_1に対して、

\[K_c = \frac{Q_1}{\Delta} \] \hspace{1cm} (77)

を等価剛性とし、また、

\[T_e = 2\pi \sqrt{\frac{M_1}{K_c}} \] \hspace{1cm} (78)

\[= 64 \]
を等価周期として評価する。次にこの系の減衰定数は \(h = h_{eq} + h_0 \) とするが、

\[
\begin{align*}
\delta h_{eq} &= \frac{\Delta W}{2\pi f_0 h} \\
\delta h &= \begin{cases}
0.05 & (f_0 < 0.05) \\
0.05 - h_{eq} & (0.05 < h_{eq} < 0.05) \\
0 & (h_{eq} \geq 0.05)
\end{cases}
\end{align*}
\]

(79) (80)

として算出する。ここで用いる \(\Delta W \) および \(h_{eq} \) はそれぞれ 1 サイクルでの消費エネルギーおよびポテンシャルエネルギーである。

また、この 1 質点系に縦振動したモデルにおける気は

\[
H_i = \sum \frac{m_i \delta_i H_i}{\sum m_i}
\]

(81)

に代表されるのである。

図19 2 質点系の動的モデル
図20 1 質点に縦振動した強震モデル

5.3 応答値の算出

地震に対する応答を計算するにあたり、まず、当該構造物に入力される地動特性を知るためにはしなければならない。この加速度はスペクトルの形で与える。解析法の基盤における加速度応答スペクトル \(S_a \)（表7）に加速度增幅率の、建物の種類および等価周期に応じた調整係数 \(p \)、有効質量比 \(q \)、地盤係数 \(Z \) をそれぞれ乗じたものを用いる。

<table>
<thead>
<tr>
<th>等価周期 (T_e (s))</th>
<th>加速度応答スペクトル ((m/s^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_e < 0.16)</td>
<td>(p \cdot Z)</td>
</tr>
<tr>
<td>(0.16 \leq T_e < 0.64)</td>
<td>1.6</td>
</tr>
<tr>
<td>(0.64 \leq T_e)</td>
<td>1.024/T_e</td>
</tr>
</tbody>
</table>

- 65 -
各変位増分ごとに応答せん断力 \(Q_n \) および応答変位 \(S_n \) を求める。
この結果を表 8 に示す。限界耐力計算を用いた場合もこの種の建物は安全限界を越えているとの評価がでる。

6 まとめ

今回の新潟県中越地方における発生した地震の被害調査を行い、川口町武道場地区で実施した民家を例に考察を加えた結果をまとめる。

1. この建物の固有周期は 1 次で約 1.0 秒、2 次で約 0.4 秒であると算定した。
2. 限界耐力計算により評価すると、安全限界を越えていることが分かった。ただし、安全限界を越えてはいるものの、修理により再使用も可能である。減衰帯域であるが滑れの障壁もあり、今後、そのための研究が望まれる。
3. 日本海側の地方の土壁は下地に竹以外のものを用いていることがある。このような地域性をもつ構法に対しての構造的評価も今後必要である。

<table>
<thead>
<tr>
<th>1/120</th>
<th>1/60</th>
<th>1/30</th>
<th>1/15</th>
<th>1/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_2 (kN))</td>
<td>34.2</td>
<td>68.3</td>
<td>68.3</td>
<td>68.3</td>
</tr>
<tr>
<td>(Q_1 (kN))</td>
<td>27.5</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>(K_e 2(kN/m))</td>
<td>1578</td>
<td>1576</td>
<td>788.1</td>
<td>394.0</td>
</tr>
<tr>
<td>(K_e 1(kN/m))</td>
<td>1100</td>
<td>1100</td>
<td>550.0</td>
<td>275.0</td>
</tr>
</tbody>
</table>

参考文献

[1] 大沢 佳・山本 正勝：昭和36年2月2日長岡地震の家屋被害について、東京大学地震研究所報告、39,549-559,1964

[3] 福山 正弘：木材のめり込み理論とその応用、耐性に期待した木質ラーメン接合の設計法に関する研究、東京大学学位論文

[4] 田端 敦士、北守 順久、森 拓磨、藤野 良二郎、小松 幸平他：京町家モデルした土壁の水平せん断性能、日本建築学会大会学術講演概要集，403-404,2004

[5] 田端 敦士、北守 順久、森 拓磨、小松 幸平：京町家における小壁の水平せん断性能、構造工学論文集,51B,2005（印刷予定）

— 67 —
表 1.1 川口町で観測された最大加速度の値（単位：最大加速度（gal = cm/s²））

<table>
<thead>
<tr>
<th>観測点名</th>
<th>西北</th>
<th>東北</th>
<th>上下</th>
<th>観測地質（km）</th>
</tr>
</thead>
<tbody>
<tr>
<td>川口町</td>
<td>6.5</td>
<td>1141.9</td>
<td>1675.8</td>
<td>2.5</td>
</tr>
<tr>
<td>小千谷市内</td>
<td>6.3</td>
<td>1008.3</td>
<td>799.2</td>
<td>7.0</td>
</tr>
<tr>
<td>山崎村竹沢</td>
<td>6.3</td>
<td>1131.9</td>
<td>538.4</td>
<td>4.3</td>
</tr>
</tbody>
</table>

表 1.1 の最大加速度値は、東西成分で 1676gal、南北成分で 1142gal という大きな値であり、10 年前に著者を含む兵庫県南部地震時に神戸湾地震気象台（JMA 神戸）で観測された 818gal という値に比べて 2 倍近い大きさであった。最大加速度値の大きさは必ずしも地域の大きさを表すものではないと言われているが、計測震度が初めて 7 を記録したという事実を納得させるのに十分大きな値であったと考えられる。

2. 調査の概要

2.1 調査の方法

京都大学生存研究を中心とする調査者は、その半数が建築学会北陸支部、近畿支部の地震調査班に編入され、被災の把握のための計測調査を土木学会の調査班と並行して委託された。計測班詳細調査に従事した。残り半数は、日本木材学会の調査班と一括する立場で、川口町の木造建物の被害状況を調査した。

調査調査は、建築学会合団調査班が用意したとして、兵庫県南部地震の調査表を一部参照した後者の調査表の両方を用意した。調査機会はかなりの数にのぼったが、詳しく調査できない場合の方が多く、結果的には不明な場合が大半を占めた。

最低限調査された項目は以下の事項である。

1. 木造建物の種類：伝統、在来、2×4、パネル（プレファブの意味）、集合住宅組み、他
2. 耐力壁の種類
3. 主な構造部材の種類（推定）
4. 生物体被害状況
5. 地震による被害度（0から1まで7段階）
6. 応急危険度判定（危険、要注意、調査済）と会社側表示（会社、半面、一部損壊）の確認
7. 被災写真と必要なスケッチ

- 69 -
2.2 調査区域
図2.1に今回の調査地域（円内）の位置関係を示す。

2.1 島之内町発光地区

山古志村から流れる芋川の下流に位置し、芋川の水が塙き止められてできた自然のダムが決壊して土石流が発生する恐れがあることから、緊張が高まった地域である。写真2.1は土石流に備えて多数の大型土嚢が積まれた発光地区の芋川流域の状況を示す。

この地域の場合は、比較的年数の経った住居が多かった。納屋、物置、農機具倉庫等の除口面積の広い建物を除いて、倒壊した住居はそれほど多くはなかった（統計的数字は不明）。一部損傷と半壊が多かった。

写真2.2は全壊の判定を受けた在来輸送構造2階建ての倉庫である。壁は土壁で、既存を直用している。外壁仕上げは板張りである。1階部
写真2.2 2階建て倉庫

分には耐力壁が少なく、大きさせん断変形し
（残留変形角はおよそ5°~20°）、2階は殆ど無
の状態であった。基礎はコンクリートブロック
であった。

写真2.3 伝統的な2階建て船形造の
住宅

住宅である。瓦陽側は耐用で、屋根に被害があったためこのような器用になったものと
考えられた。妻側の外壁小壁部分で土壁が剥落した形跡が認められたが、建物本体として
の残存変形は殆ど認められなかった。

耐力は基本的には土塁豊壁で、筋がもともと使用されている。外壁の仕上げがスギ板の場
張りであるため、一見すると土塁豊壁であることが分かりにくい。基礎はコンクリートの基礎
で、換気口も規則通り施工されている。屋根は金属版のように思える。木材の腐朽は認めら
われなかった。

写真2.5 全壊した小規模な船形造の農機具収納
倉庫（推定）。

同じ地域の在来軸組構法2階建て住宅の例
では、主屋部分は基基礎で下屋の部分は束石
という形式であった。この地域の在来軸組構法住宅は、殆どこれと同じ基礎形式であった。
玄関部分の壁が土台ごとはずれて、外側に飛び出し、土台と基礎を結合するべきアンカーボルトのナットが存在せず、恐らく締め忘れたのではないかと想像する。

別棟は船形造りの妻面を持つ1階建ての建物（用途不明）であったが、写真2.4に
示すように完全に崩壊していた。この地方の土塁豊壁は、竹の代わりに桜のような木葺を使
っており、京都の土塁豊かな異なる土塁豊壁構成であるように思えた。

写真2.4 全壊した船形造り風の別棟。京都の
ような植物をそのままの断面で木葺と
した独特の土塁豊壁であった。
2.2 埼之内町田川地区

写真2.6 線路が渡っているJR上越線の田川地区と放置された列車。

JR上越線は、さすがに電気光地区の両側に位置し、被害が甚大であった田川地区に繋がる場所である。写真2.6に示すように、この付近の上越線の線路は渡っており、線路上に動けなくなった電車が放置されていた。

この地区では、木案を新築したばかりの弘誓寺を詳しく調査した。写真2.7は大破した土蔵の前側面部分を示す。非常に激しい揺れを受けたことを物語るように、土壁は完全に剥落して、転倒し見え肌の状態であった。筋交いも入っており、しっかりとした造りに見えている。しかし、詳細な見ると、犠牲の下部は褐色腐朽しており、剛性・耐力に重大な影響を与えているように思える。

写真2.8は同じ敷地内にある鐘楼の貫接合部の破壊状況を示す。貫接合部は、静的な外力に対しては、粘弾性物質のように、めり込み抵抗で粘り強く耐えるのがイメージであるが、動的な荷重に対しては、粘弾性グリットが働く前に、いわば弾性パラ部分で破壊しきさず連れたという印象である。鐘楼の全ての貫接合部で、この写真のような貫材の曲げ破壊が観察された。

写真2.9は新築された弘誓寺の内部小摂部分の被害状況を示す。地震被害はなかったが、美しい漆塗り塗りの土蔵裏壁と思われる白壁であるが、地震のショックで仕上げ材が剥落し、実は乾式の石膏ボード系？の面材で小壁が

写真2.8 弘誓寺の鐘楼の貫接合部での部材曲げ破壊。
写真 2.9 浴場された弘願寺本堂内部の
小屋。外観上混雑状況による壕畳のよ
うに見えるが、白い部分は乾式の無機系
ボードが貼ってあった。
写真 2.10 田川地区におけるその他の土蔵の被害。
構成された現代的構法のお寺であった事が分か
る。
写真 2.10 は弘願寺と同じ田川地区で見た別
の土蔵の破壊状況である。今回の調査で観察された地震被害の特徴の一つとして、土蔵の
被害が目立った。

2.3 川口町震災地域
川口町武道場地区は、群馬県中轟地震第1回日本震の震央（M6.8、震度7、北緯37度1
7.5分、東経138度52.2分）から1km程度しか離れていない集落で、被害も甚大であった。多く
の家屋が倒壊した。
写真 2.11は、1階RC高床の上に建つ比較的新しい船舩造の住宅である。RC高床の部
分を高い基礎であると見なしして普通的に木造2階建て建築として設計する場合と、高床の部
分をRCの1階目と見なし、上部に木造の2階が存在する木造3階建てと見なしして構造計算
によって設計する場合とで、耐震性能はかなり影響を受けるように感じられる。その建築行
政上の区別と考え方については、別途専門家の報告を参考とするものとして、本稿ではこ
のような具体は3階建てで見なすこととする。
さて、写真 2.11の大型の船舩造の住宅では、2階床面より上部にかなり大きな残留変形
が認められ（残存変形角は実測不可能であったが、写真 2.12から判断すると、1/30rad.以上
はあると考えられる）、内部の被害も甚大であった。
一方写真 2.13は、ほぼ同じ地域にありながら殆ど無被害と思われる1階RC高床の上に建つ

写真 2.11 RC高床式3階建て伝統構法住宅（近景） 写真 2.12 RC高床式3階建て伝統構法住宅（近景）
現代風3階建て住宅を示す。構造の詳細は全く不明であるが、少なくとも外観上は残留変形などは前の観察されることなかった。

写真2.13 RC高床式現代風3階建て住宅

写真2.14 2階が大きく傾いた船型造りの住宅

写真2.15 2階が大きく傾いた船型造りの住宅の2階内部における土壌の被害状況。屋根梁は直径30cm以上の丸太を使用。

この建物の大黒柱は15cm角のケヤキで、差し鶴居う材せいが40cmのスギ、主屋の柱は12cm角、下屋の柱は10.5cm角のスギであった。屋根構造においては、直径30cm以上の丸太が桧木（はねぎ）のような役割を持って屋根荷重を支え、豪雪に耐える構造となっている。しかし、水平荷重に対しては、どうしたらいいかという、『ずれ易い』機構であるように感じられた。なお、丸太の樹種に関しては不明であるが、別の住宅で使用した話によると、この地域では「スギ」を多用しているということことで、地松ではなく、スギである可能性も考えられる。1階、2階を通じて、耐力要素は土壌り小屋、横壁、横壁、そして写真2.17に示す大黒柱と差し鶴居の組合せによるモーメント抵抗（材せいが40cmの差し鶴居の上下端の2段折が
柱を貫通し、更に抜きないように模で細合度を
高めているが主たるもので、完全な土壌圧
力壁は、全長が多くなかった。被災の最も特徴
的な点は、1階が和式残室形がなく立正在
しているにも拘らず、2階は非常に大きく傾いた
状態であったという点である。この点も含めて、
この建物の動的変形特性の推定については、
我々の研究室の田淵が代表で報告する予定
である。

写真 2.18 は、完全に倒壊した別の住宅を示
す。元は船形造りであったと思われる。基礎は
コンクリートブロック造、土壌圧壁の木戸には、
竹ではなく葉のような円形断面の材料がそのまま
使用されていた。また、土台材に関しては腐朽
がかなり進んでいた。ただし、この建物が地震
動によってこのように解体したのか、コンポーネ
ントによって取り壊されていた、このようになったのか
は不明である。

写真 2.19 は、昭和 26 年に建築し、平成 2年
に全面改修した船形造りの 2 階建て住宅の変
形状況を示す。1 階が大変形しており、桁行走
方向の残存变形角は 5/22 rad.であった。

飛人がによると、船形造りの住宅に使う象
徵的な桁行走方向の男根は、その上で大工の
役割が役立ってくるほど太いものを使うという
のがこの地方の慣わりであるという話であっ
た。昨夜でなければ、この住宅の大男根はケヤ
キの 20cm 角、差し杭は木材大径 40cm であっ
た。しかし、差し杭の部分で大男根の先端側
が破壊が観察された。なお、外壁の外側貼りの板
は、昭和 26 年度の前後の中核を示すが、 xp
だけを桁行走の水平耐力をほとんど寄
与していない実績状況であった。

写真 2.20 コンクリート壁面の部所破壊

写真 2.20 は、在来築造法住宅の屋根部
を示しているコンクリートブロックの壁面が局
部的に破壊した状況を示す。この住宅のそ
の他の部分の残存変形角はそれほど大きく
はなく、コンクリートブロックの壁面を主構造
と結合していた部分の腐朽によって、この部
分に破壊が生じたものの推定される。今回調査では、この様な風呂や水槽のコンクリートブロックによる鍵の反射光-backed membrane だけが局部的に破壊した例が他にも多数観察された。いずれも連結部の木部には腐朽が観察された。

写真 2.21 は地震動によって土壌を覆っていた保護用の板がひび割れ落ちた様子。

写真 2.22 は地震保護用の板がひび割れ落ちた土壌に覆われていた様子。

落ち、荒廃が露呈した土壌を示す。所有者によると、この建物は戦前後に建設されたものであるという。

写真 2.23 はこの土壌の柱がシロアリに食害されてほとんど健全な柱がなくなってしまった様子を示す。また、柱に特殊な形を加工して木製仏壇を積に掛けようとして土壌を構成していた現況を知ることができた。

写真 2.24 は作業所の屋根が崩壊した例を示す。作業所の片側の桁方向の構面には耐力壁状の物が存在していたが、その構面が倒壊したことにより屋根構面が崩壊した状況を示す。

写真 2.25 は 1 階がガレージ、もしくは作業所のような全面開放型の構造で、それも層崩れし、2 階部分が 1 階にそっくり乗せた形の建物を示す。1 階の構造は駆柱の柱に H 型鋼の梁が渡していたが梁を構造のものであったと推定される。その様な光景は、兵庫県南部地震の際に対数多く目撃された光景であったが、今回の地震では、むしろ珍しい被害状況であった。

写真 2.23 作業所の屋根の崩壊

写真 2.24 1 階が層崩れし、2 階がその上に乗っかった作業所(事務所、倉庫)
2.4 川口町木造地区

武道場から曲がりくねった道を震央方向に登っていくと、いとたる所で屋根の発生箇所が見受けられた。木造地区を通り、山古志村へ通ずる幹線道路下の傾斜地に集落は散在しており、年代を経た住宅が多かった。我々はこの地域の内閣を調査した。

写真 2.25 に円屋寺本堂の倒れ壁の破壊状況を示す。水平の貫に加えて、筋交いの斜め材が垂れ壁の中に入っていたことが分かる。この地域の住宅の土壁と同様に、架のような植物をそのまま木造として使用していることが分かる。斜め材が垂れ壁に入っているのは初めて見られるケースであった。

一方、本堂床下の腐朽状況を調査した結果、腐朽に関しては心配なかったが、写真 2.25 に示すように、東の東及びからの大きな柱が観察された。

写真 2.25 東の水平移動（高橋製造業者撮影）

また、建築の柱脚がシロアリ被害で完全に耐力を使い、内閣 2.26 に示すように、とうとう調査時に修理工事が行われていた。写真 2.27 に被害を受けた木材を示す。

2.5 川口町新庄山地区

新潟大学調査団が11月9日に発表した資料によると、第1回白書の震央と10月23日18時11分の M6.0 の余震を結ぶ直線に沿った地域が「激震ゾーン」であったと報告されている（図 2.2）。新庄山地区は、この M6.0 の余震の震央に近い地域であり、第1回目の白書に加えて、この余震による余震的な影響が観察できなかったものと推定される。この地域では、新旧の如何を問わず、建物の多くが極めて著大な被害を受けていた。

写真 2.28 は床梁の現代的な在来組縄構造であるが、2階部分が大きく変形した木造住宅の被害例を示す。この構造では、筋交い構造の踏み出しの観察された。

写真 2.29 は、ちょうど残畑外の1/10radで倒壊せずに留まって同地区の飛騨神社の姿を示す。
図2.2 新潟大学災害研究による崩壊ゾーン

写真2.28 RC高床式住宅の被害
写真2.29 1/10radで陥没した熊野神社
写真2.30 小壁の落下した住宅の被害
瓦に葺き替えた2階建てニューバル住宅の被害例を示す。サイニングボードが折れ落ち、建物のスギ板張りの伝統構法住宅を確認できた。危険度判定は、「危険」であったが、その程度はよく分からない。

詳細は不明であるが、板壁の側面は恐らく構造系の部分を木製材料とした土塗り壁と耐火仕上げが併用された耐力壁である様と思われる（このパターンが最もポピュラーであったため）。この地域の多くの建物の残存状態に比べると、この建物の残存状態は小さかった。

写真2.32は破壊した新築の伝統構法住宅を、写真2.33は在来転組法による工務店作業所兼事務所を、それぞれ示す。

3.まとめ
被害地域が広い範囲に渡っており、また起因に富んだ複雑な地形のため、被害の全容を正確にすることは難しいが、今回の調査地域で特徴的な被害状況は以下のようになる。

1）土蔵が比較的沢山建っており、その多くにおいて上部の土壁の被災が認められた。また偏角、扉の破損が認められた。
2）屋根構造の大きい伝統木造構法住宅の被害が目立った。
3）一般住宅の木造のブロック塀や倒れ等が目立った。
4）現代的な仕様の在来転組法住宅においては、大きな被害は少なかったようにと思われる。

引用文献
1）気象庁：気象、地震、火山、海洋等の知識、http://www.kishou.go.jp/know/index.htm
2）新潟大学災害研（鈴木、片岡、本郷、安井）：「震災ノゾミ（第2報）」、http://geo.sc.niigata-u.ac.jp/earthquake/tep/04/ura1109/ma.html

写真2.31 ニューバル住宅が破壊されたばかりの木造住宅の被害（元は耐火造りと思われる）

写真2.32 破壊した新築の伝統構法住宅（屋根が途中で2つに割れてる）

写真2.33 破壊した在来転組法による工務店作業所兼事務所の建物
寄稿原稿
新潟県中越地震木造建物被害調査
腐朽・蟻害の観点から

高橋旨象・土居修一

1. 調査方法

地震により損傷を受けた、場之内町亀光および田川、川口町武道窪および田町山地区の木造住宅および寺社建物約50棟の腐朽と蟻害の状況を調査した。すでに行われた応急危険度判定により、「危険」（赤紙）または「要注意」（黄紙）と表示されていた建物を主体に調査したが、全被建物も一部調査した。調査地域は蒙雲地帯であるため、冬期には積雪の圧力を緩和する架構を取り付けられる伝統軸組み構造法住宅が多いが、1〜2 m 高のコンクリート基礎壁を廻らせて車庫および貯蔵庫とし、その上に1〜2階の大壁式木造住宅を建設する、いわゆる高床式木造住宅が近年増加しつつある。基礎壁の代わり、または外側に一定間隔で円柱や角柱を打ち込み、建物を支持したものもある。対象建物について、目視およびドライバーによる聴診・刺診により、床組および軸組部材の腐朽と蟻害の状態を調査し、写真を撮影した。

2. 調査結果

建物周囲や内部など、比較的詳しく観察できたものの例を以下に示す。

2.1 場之内町亀光・田川

①建物1（表示「要注意」）:

調査第一日のスタートとなった建物で、浴室窓枠や振動で露わになった壁内部の部材に腐朽と蟻害が認められた。
②建物3（表示「危険」）:
浴室のタイル貼り内壁の崩壊とブロック積外壁の倒壊により露出した壁内節材、窓枠に腐朽と蝕食（矢印）が認められた。
④建物④(表示「注意」):
高床式住宅で、コンクリート基礎には異常がなかったが、台所の屋外からの出入口下に取り付けた板に被害（矢印）が認められた。
④建物5（白山神社頂, 表示「危険」）：
外壁は全部剥落しているが、倒壊していない。しかし、土台と柱の基部の腐朽が激しく、危険な状態にある。
⑤建物11（全壊）:
腐朽や膨脹のある部材がいくつか見られたが、部位を特定することはできなかった。

2.2 川口町武道館

⑥建物川口②（表示「危険」）:
柱が折損し、建物が歪んでいる。水回り部分の土台はかなり以前から腐朽により欠損していたと思われる。隙間に板が挿入されている。
⑦建物川口⑧（表示「危険」）
2階が強く揺れているほか、床の間と仏壇を
取めた1階出っ張りの外壁が剥離し、土台と
柱の取り合い部分が腐朽して欠損している
（矢印）。
⑧建物川口6（全壊）
台所と便所と思われる部分の土台に腐朽が認められた。

⑨建物川口9（表示「危険」）
外壁はすべて剥落し、建物が傾斜している。土台、柱、壁構成部材が腐朽している。
建物110（武道館会館、表示不明）

非常階段が落下。建物の外壁と土間コンクリートの階段部が腐朽しており（矢印）、落下を促進した可能性がある。

建物119

高床式住宅。物置としている部分の壁内部材がシロアリに激しく食害されている。
2.2 川口町・田中山

③建物121（鐘楼）

著しく腐朽した土台の更新を行っていた。
④建物1259（表示「要注意土地」）：
浴室の崩落した内壁裏前面にシロアリの食害が認められた。

⑤建物番号？（表示「危険」）：
浴室部材の腐朽（矢印）が顕著である。
3. まとめと考察

調査結果をまとめてみると、以下のようになる。

1) これまでの調査と同様に、浴室を筆頭に水回り部分の壁内部材、窓枠下部、土台、土台と柱の結合部に腐朽と蟻害が顕著に認められた。とくに、蟻害の多さは、寒冷地である点から予想外であった。

2) 浴室の外壁は、生物劣化を受けやすいことが経験上知られているため、ブロック積みの簡易構造をしている場合が多いが、地震による倒壊が数多く見られた。強い地震発生時の浸水後の安全確保に問題を残すと考えられた。

3) 建物を積雪の圧迫から守るための架構用木材は、冬期以外は軒下、床下、屋根などに置かれているが、腐朽や蟻害を生じている例がしばしば見受けられ、シロアリの建物への侵入を助ける可能性があると考えられた。

4) 調査した伝統真壁構法住宅、高床式住宅、寺社建物のいずれにも、木材の防腐・防蟻処理は行われていなかった。

5) 今回の調査範囲に限定すれば、ほとんどの建物は、直下型地震に特有の激しい突き上げと強い横揺れで損壊しており、1例（○武道建会館の非常階段）を除き、腐朽・蟻害が損壊を促進したとは考えられなかった。
資料
表1 No.1～13の被害状況

No.1
(1) 仕様等
- 平成元年完成。第16年。
- 1.70mの高基礎+木造軽組構法2階建て。
- 屋根：鉄板葺きの片流れ屋根。
- 外壁：塗装系サイディング。
- 内装：石膏ボード+クロス。和室は上壁。

(2) 主な被害
- 内装材のクラック、浮き上がりが中心。
- 外壁にも亀裂、欠けを確認。
- 地面での基礎上部に欠けが有り。
- 軒下変形、東西が東方向へ1/200～1/150mm程度。南北は極端。
- 2階洋室にあったアップライト式ピアノが足下を前に転倒。

(3) その他の情報
- この地域は新築住宅地で、地盤の土は川口町田養山周辺の土を持ってきたらしい。

写真1.1 No.1外観

写真1.3 和室土壁の割れ、欠け

写真1.4 足下から転倒したピアノ

写真1.5 外壁サイディングの割れ

写真1.6 RC基礎の剥落
No. 2

(1) 仕様等
 - 平成 16 年 11 月完成、現在入居作業中。
 - 2.90m の高基壇＋木造軸組構法 2 階建て。
 - 屋根：鉄板葺きの片流れ屋根。
 - 外壁：塗装系サイディング。
 - 内壁：石膏ボード＋クロス、和室は土壁。

(2) 主な被害
 - 基礎、外壁、内壁共に確認できる被害無し、引き渡し前の地震だったため、若干の補修をしないという話。

(3) その他の情報
 - 大黒柱：ケヤキ 25cm 角、床柱：ケヤキ？17cm 股、和室入り口の柱：ヒノキ 20.5cm 角。
 - 階段踏み板にもヒノキを使用、梁は集成材（オウシュウアカマツか？）。

写真 2.1 No.2 外観
写真2.3 25cm角のケヤキ大黒柱
写真2.4集成材を用いた2階梁
写真2.5ヒノキの階段

図2 No.2平面図
No. 3

(1) 仕様等
・ 平成9年2月完成。築7年半。
・ 基礎は木造軸組法2階建て。
・ 屋根：鉄板葺きの切妻屋根。
・ 外壁：構造用合板下地＋化粧板張り。
・ 内壁：ほぼ全ての内壁が筋交い＋化粧板張り。一部垂れ壁部分にクロス使用。

(2) 主な被害
・ 基礎、屋根の被害は無し。
・ 内外壁共に張り替えのため、内部の様子を確認できず。キッチン、和室のクロス部分にしか一部確認された。
・ 1階南側部にある浴室で内装板張りの目隠し材が破壊。相当の地震振動を受けたか？
・ 残留変形は無い。

(3) その他の情報
・ 小屋裏も内装、フローリングが施工済み。
・ 居室として使用可能。

写真3.1 No.3外観
写真3.2 クロスのしお
写真3.3 クロスのひび
写真3.4 塗装した目隠し材
写真3.5 階段室と内装の様子
写真3.6 内装を施した4屋裏

- 94 -
図3 No.3平面図

No.4

(1) 仕様等
・ 平成13年4月完成、築3年。
・ 2.50m高基礎+角ロープハウス。（2階部分は小屋裏に相当。通常の縁取構法によらない小屋組。）構造材はペイマツ製材またはペイマツ集成材。
・ 屋根：鉄板葺きの切妻屋根。
・ 内壁：ラジアーターパインの板張り。

(2) 主な被害
・ 基礎、屋根共に被害は無し。
・ 内外壁も特に目立った被害はない。
・ 2階（小屋組）の梁梁手（繊掛け経縦ぎor繊掛け綺緯ぎ？）の両翼部分にせん断破壊の跡あり。地震の揺れによるものかどうかは不明。
・ 台風変形は無い。

(3) その他の情報
・ 床下部分に見えるロープを締めるボルトの一部が、既に基礎まで到達してしまい、それ以上沈下しても締め付けられない状態になっていた。
・ 家具の転倒も皆無。意外と畳敷きは低かった可能性も。
写真4.3 外壁の様子
写真4.4 基礎上階のボルトの様子
写真4.5 階手の様子

図4 No.4平面図
-96-
No.5

(1) 仕様等

- 非常に古く第50年代か？
- 独立基礎＋木造軸組構法2階建て（セガイ造）、増改築多数あり（増築部分は布基礎）。
- 屋根：鋼板葺きの切妻屋根。
- 外壁：下見板張り。
- 内壁：和室は上塗装、他の部屋はモルタル
+ クロスしかなかつ、窓枠が少なく殆どが戸か障子。
- 平面・立面計画も複雑でバラバラ。

(2) 主な被害

- 1階上台が滑落し5〜9cm移動。布基礎が上に覆っている状態。それに伴い、南東側布基礎が一部外にセントン破壊。アンカーボルトに引っ張られた破壊と思われる。
- 淀化していないが、残留変形は小さい様子。全体的に水平移動した感じ。
- 1階梁がセントン断壊。それを下から補強材で支えている。
- モルタル壁が多数損傷、キッチン横の戸
落篭の内部、材木の腐朽を確認。
- 屋根に火災が出たようで、新たに鉄板
の施工をしている箇所は、表面も腐食だ
ったのか、長かったのか不明（下層は以前から鉄板）。

写真5.4 1階の移動（上写真の右2箇）
写真 5.6 梁の破壊と補強
写真 5.7 梁破壊箇所の拡大
写真 5.8 1階内装の剥落（キッチン）
写真 5.9 内装の被災（キッチン）
写真 5.10 内装の被災（1階和室）
写真 5.11 内装の被災（1階和室）
写真 5.12 内装の被災（2階洋室）
No. 6

(1) 仕様等
- 築年90年。
- 玄石基礎・木造軒組構法2階建て（セガイ造）、典型的な田の字型の古民家。
- 屋根：鉄板葺きの切妻屋根。
- 外壁：下見板張り。
- 内壁：土塀塗り。

(2) 主な被害
- 壁塀およびの間の腐食に若干の被害。
- 大きな瓦が散らばり散らばっている。
- 1階床間の床下端に付いた材（鴨居？）が落とし、大入れ寸法1cm程度。
- 床下の土が崩落したため、ブルーシートで囲み、全体を対処。
- 1階壁端の上台製作仕口が引き抜け。（写真6.1 No. 6 壁崩）
No. 7

(1) 仕様等
・ 平成 15 年 12 月完成、築 1 年。
・ 3.35m 高基礎 + 木造軸組構法 2 階建で、
 構造材はオウシュウアカマツ集成材。
・ 屋根：鉄板葺きの切妻屋根。
・ 外壁：板塀サイディング。
・ 内壁：両面内張り仕様。
・ 内壁：耐震用合板パネル+化粧用ライニング。
・ 地下、屋上部分にはスチール使用。
・ 桁は 1 階天井が 120×240、2 倍天井が 120×300、小梁が 120×120 または 120×150、柱はすべて 120 角。

(2) 主な被害
・ 上部構造に関しては無被害。
・ RC 基礎に一部沈下が見られる。
・ 階差部分の延長が約 20cm 下がり、集
 会所下には多数の柱が打ち込まれていた
 ので沈下しなかった。

(3) その他の情報
・ 養之田川地区的住民の避難所として使
 用していたが、家族だけ使用中。
No. 8

(1) 仕様等
- 鉄 25 年。
- 無筋布基礎 + 木造軸組構法 2 階建て。
- 屋根：鉄板葺きの切妻屋根。
- 外壁：鉄板サイディング。
- 内壁：主に土塗り壁。

(2) 主な被害
- 応急危険度判定：赤。既に家財道具全て
 引き出し
- 被害は主に地盤の崩れによるもので、地
 盤が下がる（水平移動を伴う）ことによ
 り、住宅基礎が破壊され、それに伴い家
 屋も引きずられるように破壊。
- 同理由で無筋布基礎にも破壊箇所が多
 数。アンカーボルトは確認できた。
- 基礎の移動により 1 階南側の土台が引き

摘られ、南壁面も直交壁線から分離。柱
が真っ二つに剥ぎ取れた箇所もあった。
- 壁内の土塗り壁等は全く損壊無し。

(3) その他の情報
- 畳の畳張に伴い、25 年前に移動した家。
- 敷地は斜面に築き上げて造成した場所。
 そのため、周辺には地割れが多数存在。
- 1 年前に外壁サイディングを新たに改修
 したばかりだった。
- 家主は既に退去済み。いずれ信頼予定の
 ようだが、修繕・補修をすれば十分
 使用できるよう。
図8 No.8平面図

− 104 −
No. 9

(1) 化粧等
 - 第 30 年以上。
 - 基礎（木造は独立基礎）+ 木造軒
 - 基礎に 2 階建て。地蔵が数ヶ所あり。
 - 基礎：鉄筋コンクリート基礎。
 - 基礎：井戸（小屋部分はモルタル）。
 - 内壁：土塗り壁又はモルタル。

(2) 主な被害
 - 基礎の亀裂が数ヶ所。小屋部分外壁にも
 亀裂が数ヶ所見られる。
 - 土塗り壁の角度が若干傾いているが、亀
 裂や剥落は殆ど無い。モルタル壁には亀
 裂も見られる。
 - 建造体の被害は無いが、実験中心付近の
 土台が崩れているのか？か
 なり沈み込んでいるので、そのひずみが
 各所に出ている。（今後の地震で起きた
 ものではない。）
 - 僅かな残留変形あり。

(3) その他の情報
 - すぐそばに川があり、あまり良い地盤で
 はない。

写真 9.1 No.9 外観
写真 9.2 南面の独立基礎
写真 9.3 布基礎の亀裂
写真 9.4 モルタル外壁の亀裂
写真 9.5 上塗り壁の損傷
写真 9.6 モルタル壁の損傷
No.10

(1) 仕様等
・ 筑80年、2階は増築で築22年。
・ 独立基礎（一部埋基礎）+木造軸組構法
 2階建て（セギ造り）。
・ 屋根：鉄板葺きの切妻屋根（銅板屋根）。
・ 外壁：下見板張り。
・ 内壁：1階が土塗り壁、2階が石膏ボード
 ド+クロス。

(2) 主な被害
・ 基礎周囲のB1C部分に亀裂あり。
・ 家屋の破損は1階に集中、土塗り壁の崩落、亀裂、欠けが殆ど。
・ 枝が沈み込み、差し鶏居も同様に沈んだ
 ため、戸が開かなくなった場所もある。
・ 部材そのものの被害は特に確認できず。
・ 2階は南側石膏ボードが若干浮いていた
 が、県には被害を確認できなかった。

(3) その他の情報
・ 西側の古い下見板張り部分は農作業小
 屋で、脱穀機等が置いてある。
・ 新しい方は2階増築時に下見板を張り直したと思われる。

写真10.1 No.10外観
写真10.2 基礎地盤の亀裂
図10 No.10 平面図
(1) 仕様等
- 昭和56年完成、築24年。
- 24.5m高底盤+水池軸組構法2階建て。
- 屋根：鋼板葺きの片流れ屋根。
- 外壁：一部が板張りで、東面と小屋部分のみモルタル。
- 内壁：和室は土塗り壁、他は石膏ボード+クロス。

(2) 住宅被害
- RC基礎、コンクリートの被弾痕あり、東面の基礎と木造との境目に一部亀裂あり。
- 外壁は板張りのため損傷は確認できず。
 （キッチン窓の内壁側部に亀裂があかったが外部からは全く見えない）小屋部分のモルタルに一部亀裂あり。
- 風呂場の外壁（RC基礎の上にコンクリートブロックを積層）が崩壊、既に補修済み。風呂場内部をユニットバスにする工事が進行中。
- 工事中の風呂場で壁の内部を観察。3つ割り筋がない（鏡面は打留め）を確認（図面上は2つ割り筋がない箇所にある）。
- 仕口に羽根板バーチの使用も確認。
- 内装材は一部クロスのしわ、切れが見られるが、大きな損傷はない。
- 左側正面の作り付け棚が大きく揺れて留め付け部分が外れた。

(3) その他の情報
- 2階南面の戸建は増築、昔はペランダだった。
- 壁面には面積が広がることから、あまり良い地盤ではないと思われる。

写真11.1 No.11外観
写真11.2 構造境界部の亀裂
写真11.3 キッチン内壁の亀裂
写真11.4 風呂場壁内（筋かいの跡あり）
写真11.5 土塗り壁の損傷
No.12

(1) 建築等
- 地階2階、玄関及びアトリエ部分は増築。
- 1.65m 床基礎＋木造軸組柱法2階建て。
- 小屋：鉄板葺きの寄棟棟板屋根。
- 外壁：化粧合板＋板張り。
- 内壁：既存が土塗り壁。

(2) 主な被害
- 基礎に一部亀裂が見られる。
- 外壁は板張りであるため亀裂を確認できず。
- 内壁塗り壁は内壁の欠けや剥がれ等が
- 中心、2階も同様だが軽微。
- 階段室が若干広い吹き抜けになっており、階段手すりが割れて危険な状態。
- 1階和室の役が下がって、散居等との間
- に破損が生じた。床下の大引きや根太に
- 損傷は確認できず、原因は不明。
- 1階和室の残余変形は、東西に最大
- 10/1750rad、南側に3/1300rad程度。

(3) その他の情報
- 和室の照明が横付けで天井に接続し
- たらしく、跡が残っていた。
- No.11と同様、風呂場外壁が崩壊して既
- に補修済み。
写真12.3 基礎の亀裂
写真12.4 天井に残った蛍光灯の跡
写真12.5 1階トイレ内壁の損傷
写真12.6 土壌壁の損傷（1階廊下）
写真12.7 土壌壁の損傷（1階廊下）
写真12.8 1階内壁の損傷（2階和室）
(1) 仕様等
 - 昭和36年完成、築17年。
 - 1階建、高基礎+木造軸組法2階建て店舗兼住宅（基礎部分が店舗）。
 - 屋根：鉄板葺きの片流れ屋根。
 - 壁面：鋲板サイディング。
 - 内装：石膏ボード+クロス（和室は上塗り塗り）。

(2) 主な被害
 - 基礎、屋根、外壁の被害無し。
 - 1階和室の土塀が壁角部に多少割開が出来ているが、欠けや亀裂はない。
 - 階段室および2階の石膏ボード張替に某所のクロスに重ね、2階の方が変形が大きかった。
 - 1階風呂場の内装タイルが何枚か落ちしたが、既に仮設済み。
 - 西側は道路に面しており、雨とアーケードとが接合されている（この影響もあってＸか接続か違う？）。アーケードが若干西側にずれられた部分に引きずられて、西側壁面が剥がれるという被害あり。

(3) その他情報
 - 2階東側洋室のタンスが全て破損、この家は東側洋室は基礎部分がBC床柱では無く、普通の基礎基礎になっているが、この基礎の違いにより東西で揺れ方が異なっていた可能性がある（東側の居室の方が揺れが大きかったとの証言）。

写真13.1 湯沢邸外観
写真13.2 内装クロスの破れ（2階和室下）
写真13.3 西側壁面の剥離
寫真13.4 内装クロスの破れ（2階洋室）
写真13.5 小屋裏の様子
日本木材学会 木材強度・木質構造研究会
2004年度春期シンポジウム
新潟県中越地震における木造建築物の被害
日時：2005年3月18日（金）
京都

担当幹事 内迫貴幸, 加藤英雄