微生物機能を利用した木質バイオマス資源からの新規プラスチック原料の開発

ポスト化石資源としての木質バイオマス資源

皆さんはこれまで石油を中心とした化石資源から作られて来たエネルギー、化学原料・製品の多くが木質バイオマス資源からも製造可能である事をご存知でしょうか？木質バイオマスは、地球上に最も自然に存在するバイオマス資源で、その成分は多糖類のセルロース、ヘミセルロース、芳香族成分のリゲニンから構成されています。セルロースやヘミセルロースは、既に紙、繊維の原料、甘味料として利用されていますが、アルコールや水素ガス、メタンガス等、エネルギー源への変換も可能で、現在その変換技術開発が盛んに行われています。一方、リゲニン等のポリフェノール成分は、化石資源に含まれる成分に類似の化合物から構成されているので、本来は非常に応用価値が高いもののですが、複雑な高分子の化学構造のため均一な成分に分離・精製することが出来ず、これまで紙・ハーブ産業で燃料としてのみの利用しかされていませんでした。しかしながら近年、リゲニン分解微生物のリゲニン分解・代謝酵素遺伝子を操作することにより、不均一で多様な構造のリゲニンも、均一な単一物質であるPDC（2-ピロリン-4,6-ジカルボン酸）へ効率的に変換でき、PDCが生分解性ポリマー原料になることが見出されました。

複雑な化学構造を持つリゲニンの均一な中間物質（PDC）への変換

バルプ工場廃液より分離されたバクテリア Sphingomonas paucimobilis SYK-6 株は低分子リゲニンを分解しエネルギー源として生育します。このメカニズムを調べてみると、様々な構造を有する低分子リゲニン化合物は必ず代謝中間体であるPDCに変換され、最終的に水と二酸化炭素へ分解・代謝されることが解りました（図1）。

PDCは微生物の代謝途中の化合物であることから生分解性のある物質で、分子内に対称性がない2個のカルボン酸を有するユニークな構造を持ち、このカルボン酸を介して高分子化することにより生分解性プラスチック、繊維材料として発展できる価値のある物質です。PDCはその特異的な化学的性質から従来の有機合成法では製造困難な物質ですが、これまでに種々のリゲニン化合物の分解・代謝に関する遺伝子が解明されているので、遺伝子工学技術に基づきそれらの遺伝子を上手に組み合わせ再構成することが出来れば、低分子リゲニン化合物から生物工学的にPDCを製造することが可能となる。
図2. 代謝機能遺伝子再構成によるパニリンからのPDC変換

図3. 代謝機能遺伝子再構成によるガリック酸からのPDC変換

図4. PDCを出発物質とした生分解性高分子材料

PDCを原料としたポリマー合成

PDCは二塩基酸であることから、通常の高分子合成により種々の重縮合系ポリマーであるポリエステル、ポリアミドに、あるいは重合加系ポリマーとしてポリウレタンへ変換することが出来ます（図4）。既にPDCから誘導したPDCジクロロドヘキサメチレンジアミンの溶液重縮合によりポリアミドの合成に成功しています。またPET（ポリエチレンテレフタラール酸）と同様なポリエステル合成にも成功しています。

今後の取り組み

廃材、廃きのゴム、樹皮、茶葉等は多量の芳香族バイオマスを含むことから、これらの資源から効率的なPDC生産技術を開発して行きます。また、PDCを原料としてポリエステル接着剤、導電性接着剤、ポリエステル繊維・フィルム材料等を製造する技術についても取り組んで行います。

研究の“森”から第142号 平成17年11月30日発行
編集発行：森林総合研究所企画調整部研究情報課広報係
〒305-8687 茨城県つくば市松の里1番地
TEL：029-873-3211 FAX：029-873-0844
E-mail：kouho@ffpri.afrc.go.jp URL：http://www.ffpri.afrc.go.jp

研究の“森”からはホームページでもご覧いただけます。http://www.ffpri.afrc.go.jp/index-j.html