Studies on soil invertebrates in the Tama Forest Science Garden
2. Soil macrofauna in a evergreen natural forest

Keiko NIIJIMA¹ and MinorI HASHIMOTO²

Abstract
Soil macrofauna was surveyed in a natural forest of Abies firma Sieb. et Zucc. and Quercus glauca Thunb., Tama Forest Science Garden, Hachioji, Tokyo, Central Japan. Soil animals were collected using the hand sorting method two or three times a year from May 1997 to April 1999. The soil macrofauna communities contained the groups, which had been thought to live only in undisturbed stands, for example, Opilions, Liguidum, Amphipoda, Symphyla, Thysanura etc. The dominant soil animals in number were Oligochaeta (15.6 %), Crustacea (15.6 %), Chilopoda (14.8 %) and Formicidae (14.2 %). Those in biomass were Oligochaeta (60.2 %) and Diplopoda (12.7 %). The density of Isopoda, Diplopoda and Chilopoda attained to the maximum in summer. The total density of soil macrofauna tended to increase in summer, though the difference among seasons was not significant. The biomass of soil macrofauna increased in the year, which had much precipitation.

Key words: soil macrofauna, density, biomass, Oligochaeta, Diplopoda, evergreen natural forest, environment
ほか。また、青木（1989）はハンドソーティング法で得られた土壌動物のグループ構成から、自然の豊かさを評価する「大型土壌動物による環境診断」を提案している。

今回、科学園のモミ・アラカシ天然林において、大型土壌動物の個体数、現存量の変動、および環境条件との関係について調査を行った。これらの結果を既存のデータと比較することにより、科学園の森林における大型土壌動物の特徴を明らかにすることができたので報告する。

調査地と調査方法
東京都八王子市甘里町森林総合研究所内多摩森林科学園内のモミ・アラカシを主とする然林で調査を行った。ここはササラダニ類の調査を行った同園内の5 林分のうち、出現種数が最も多かった地点である。調査林分の植生および土壌について、調査は新島・水谷（2003）を参照されたい。

土壌動物の調査は1997年5月に予備調査を1地点で行った後、同年7月と8 - 9月、1998年5、8、10月、1999年3月と4月の計8回行った。1回の調査において、林内に25 x 25 cm²の方形枠を4 - 5 個設定し、枠内のA層（1.5 - 5 cm）およびA層（約15 cm）の鈍質土層を分けてピニール袋に入り、研究室に持ち帰り、サンプルの含水率算出のため、まず湿重量を測定後、中の動物を吸虫管等で採集した。中型土壌動物のダニ類、トビムシ類およびヒメミミ類も、肉眼で識別可能な個体は採集した。採取した土壌動物を80%エチルアルコールで固定し、グループ別に計数した。湿重量はグループ別にまとめて、湿度で余分なアルコールをふき取り、秤量びんに入れ、0.1 mgの単位で測定した。しかしダニ類は採取個体数が少なく、重量の測定が困難だったため、存否のみを記録し、後述の環境診断に役立てた。

調査地の環境条件

調査期間中の環境条件をFig.1に示した。年平均（1979 - 1997年の平均値）と大きな差がみられたのは次のような事柄である。年間降水量は503 mmで、年を146 mm下回り、7月の気温は毎年より1.6℃高かった。1998年は2 - 5月にかけて気温が年平均より1.0 - 2.2℃高く、7 - 9月の総降水量は1,349 mmで、平年を700 mm下回った。1999年1 - 3月の土壌湿度は前年より1.3 - 1.7℃高かった。

大型土壌動物を採集した地点の堆積分布の諸性質をTable1に示した。雨のなかった1997年のA層の厚さは2 - 5 cm、堆積量は1.8 - 1.9 kg/m²であった。1998年5月には厚さ2 - 3.5 cm、堆積量は1.3 kg/m²と減少し、8 - 10月にはそれぞれ1.5 - 3 cm、0.9 - 1.1 kg/m²と、
さらに減少した。1999年3-4月はA層の厚さが2-5 cmとやや増加したが、堆積量は0.7-1.4 kg/m²と少なかった。A層の堆積量を年度ごとにまとめてスイングメントの変動検定を行った結果、1997年に1998年との間に
P = 0.0001で有意差が認められ、秋の多い年はA層の堆積量が減少したことが明らかになった。A層の内訳は、広葉樹葉落葉が1999年3月に53%を占め、他
の調査時は14-26%であり、針葉樹落葉は4%以下であった。枝・果実等の比率は1997年23-27%、1998
年は43-55%、1999年は32-37%であった。6 mm
以下の画分は10-55%で、少量の針葉樹落葉を含むが、
大部分は広葉樹樹葉と枝等の破砕物であった。
A層の含水率は雨の少なかった1997年に22-38%
と低く、雨の多かった1998年には56-64%と高かった。
0-5 cmの土壌層の含水率は42-63%で、A層よりも
安定していた。窒素の占有率は、A層が1.25%、A層(0
-5 cm)が1.01%、A層(5-15 cm)が0.59%であった。

大型土壌動物の個体数と現存量の変動

大型土壌動物の生息密度をTable 2に示す。平均
生息密度の5%以上を占める土壌動物はナガミズミ
目(7.0%)、ヒメミズ科(8.6%)、ケモノ(5.1%)、等脚
目(14.4%)、ヤスケ(7.0%)、ムクダク(14.8%)、
コムム(6.0%)およびアリ科(14.2%)であった。採
集総個体数は2,820個体で、上記8グループはいずれも
150個体以上採集された。

個体数の変動をみると、ナガミズミ目は雨の多かった
1998年の8-10月に188-212個体/m²生息してい
たが、それ以外の調査時は100個体/m²以下であった。
ヒメミズ科は雨の少なかった1997年にはごくわずか
しか採集されなかったが、他の調査時は150-220個体/
m²と安定していた。ケモノはいずれの年も3-5月に
少なく、10月まで徐々に個体数が増加する傾向が見ら
れた。ナガミズミ科以外は等脚目、ヤスケ、ムクダクと
もに8-9月に生息密度が高かった。等脚目は雨の少な
かった1997年8-9月に518個体/m²と最高値を示し、
これらのもと1998年5月および1999年3月との間は
SchefeeのS testでP < 0.01、1997年7月および1999
年4月との間はP < 0.05で有意な差が認められた。ム
カダイ鰍も1997年8-9月に最高値429個体/m²を示し、
これらのもと1997年7月、1998年5月、1999年3月
と4月との間はP < 0.01、1998年10月との間はP < 0.05
で有意な差が認められた。一方、ヤスケは雨の多かっ
た1998年8月に最高値264個体/m²を示し、この月と
1997年7月との間はP < 0.01、1998年5月と10月およ
び1999年4月との間はP < 0.05で有意な差が認めら
れた。コムムは1997年8-9月に342個体/m²採集
されたが、それ以外の月は84個体/m²以下であった。
アリ科は1998年10月から翌年3月にかけて44個体/
m²以下であったが、4月から9月にかけては128-368個
体/m²採集された。大型土壌動物の総個体数は8-9月
に2,028-2,481個体/m²、それ以外の月は840-1,372個
体/m²であり、夏に増加する傾向が見られた。これら
個体数の変動に関する傾向は、いずれもサンプル間の
ばらつきが大きくため、前述の3グループ以外は季節間に
有意な差は認められなかった。

その他として、ウズムス科、昆虫類のシジ目、
シロアリ目、アザミムウマ目、アリ以外の膜翅目およびナ
ガミズミ目の卵キャベやケモノの卵のようなどがある。また、
試料採取時に樹上から落下して混入した可能性も考えら
れるチタチムム目、カマリムム目、ケガロムム目の中
に含めたが、その数はわずかであった。

**大型土壌動物の現存量（湿重量）をTable 3に示した。現
存量が最も大きかったのはミズミグで、全土壌動物の
60.2%を占めていた。季節のには5月に最大値を示し、
7-8月に一時減少した後、9-10月に増加した。年別には、雨
の多かった1998年には8.9-16.9 g/m²と大きく、雨
の少なかった1997年の7-9月には1.8-3.4 g/m²と小さい値を示した。
ミズミグに次いで現存量が大きかったのはヤスケで、全土壌動物の12.7%を占め

<table>
<thead>
<tr>
<th>Table 1. モミ・アラカシ天然林の堆積腐植および土壌の諸性質</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties of the litter and soil in a natural forest of Abies firma and Quercus glauca</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>調査年月日</th>
<th>A層の厚さ</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-8 Jul.</td>
<td>2-5 cm</td>
</tr>
<tr>
<td>27 Aug-4 Sep.</td>
<td>2-3 cm</td>
</tr>
<tr>
<td>25-26 May</td>
<td>2-3 cm</td>
</tr>
<tr>
<td>31 Aug.</td>
<td>1.5-2 cm</td>
</tr>
<tr>
<td>26 Oct.</td>
<td>1.5-3 cm</td>
</tr>
<tr>
<td>1 Mar.</td>
<td>4-5 cm</td>
</tr>
<tr>
<td>27 Apr.</td>
<td>2-4 cm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>堆積腐植質量</th>
<th>堆積腐植の内訳</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg dry weight/m²</td>
<td>Leaves of broad leaved tree</td>
</tr>
<tr>
<td>18.1</td>
<td>3.6</td>
</tr>
<tr>
<td>14.2</td>
<td>3.6</td>
</tr>
<tr>
<td>26.4</td>
<td>1.2</td>
</tr>
<tr>
<td>20.1</td>
<td>0.1</td>
</tr>
<tr>
<td>15.2</td>
<td>0.8</td>
</tr>
<tr>
<td>52.5</td>
<td>0.7</td>
</tr>
<tr>
<td>25.5</td>
<td>2.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>内容物 (kg dry weight/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.8</td>
</tr>
<tr>
<td>42.7</td>
</tr>
<tr>
<td>45.2</td>
</tr>
<tr>
<td>55.4</td>
</tr>
<tr>
<td>37.0</td>
</tr>
<tr>
<td>32.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>含水率</th>
<th>Water content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>51.7</td>
<td>0.1</td>
</tr>
<tr>
<td>54.7</td>
<td>0.0</td>
</tr>
<tr>
<td>29.5</td>
<td>0.0</td>
</tr>
<tr>
<td>34.5</td>
<td>0.0</td>
</tr>
<tr>
<td>23.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10.2</td>
<td>0.0</td>
</tr>
<tr>
<td>35.6</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>土壌 (0-5 cm) S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.14</td>
</tr>
<tr>
<td>6.38</td>
</tr>
<tr>
<td>5.99</td>
</tr>
<tr>
<td>6.66</td>
</tr>
<tr>
<td>0.75</td>
</tr>
<tr>
<td>0.70</td>
</tr>
<tr>
<td>7.03</td>
</tr>
<tr>
<td>6.06</td>
</tr>
</tbody>
</table>

Table 2. ゆき・アラカシ天然林の大型土壌動物の生息密度 (個体数 m⁻²)
Density of soil macrofauna in a natural forest of *Abies firma* and *Quercus glauca* (individuals/m²)

<table>
<thead>
<tr>
<th>動物名</th>
<th>調査日</th>
<th>1997</th>
<th>1998</th>
<th>平均密度</th>
<th>比率 (%)</th>
<th>採集総個体数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sampling date</td>
<td>28 May</td>
<td>7-8 Jul</td>
<td>27 Aug-4 Sep</td>
<td>25-26 May</td>
<td>31 Aug</td>
</tr>
<tr>
<td>マキガイ類 Gastropoda</td>
<td></td>
<td>36 ± 20</td>
<td>48 ± 65</td>
<td>32 ± 35</td>
<td>16 ± 23</td>
<td>24 ± 1.7</td>
</tr>
<tr>
<td>ミミズ類 Oligochaeta</td>
<td></td>
<td>80 ± 21</td>
<td>92 ± 24</td>
<td>92 ± 24</td>
<td>121 ± 189</td>
<td>188 ± 142</td>
</tr>
<tr>
<td>ナガミミズ目 Haplotaxida</td>
<td></td>
<td>35 ± 74</td>
<td>130 ± 151</td>
<td>152 ± 181</td>
<td>208 ± 86</td>
<td>164 ± 173</td>
</tr>
<tr>
<td>イトミミズ目 Tubificida</td>
<td></td>
<td>29 ± 21</td>
<td>12 ± 15</td>
<td>16 ± 13</td>
<td>24 ± 16</td>
<td>8 ± 9</td>
</tr>
<tr>
<td>ヒメミキミズ科 Encytraeidae</td>
<td></td>
<td>4 ± 8</td>
<td>4 ± 8</td>
<td>24 ± 9</td>
<td>9 ± 10</td>
<td>10 ± 1.7</td>
</tr>
<tr>
<td>クモ類 Arachnida</td>
<td></td>
<td>16 ± 46</td>
<td>138 ± 58</td>
<td>56 ± 28</td>
<td>64 ± 39</td>
<td>72 ± 30</td>
</tr>
<tr>
<td>カニムシ目 Pseudoscorpiones</td>
<td></td>
<td>6 ± 9</td>
<td>10 ± 14</td>
<td>4 ± 8</td>
<td>8 ± 8</td>
<td>24 ± 9</td>
</tr>
<tr>
<td>サトムシ目 Opiliones</td>
<td></td>
<td>16 ± 46</td>
<td>138 ± 58</td>
<td>56 ± 28</td>
<td>64 ± 39</td>
<td>72 ± 30</td>
</tr>
<tr>
<td>サラミス目 Araneae</td>
<td></td>
<td>16 ± 46</td>
<td>138 ± 58</td>
<td>56 ± 28</td>
<td>64 ± 39</td>
<td>72 ± 30</td>
</tr>
<tr>
<td>甲殻類 Crustacea</td>
<td></td>
<td>80 ± 173</td>
<td>112 ± 68</td>
<td>112 ± 68</td>
<td>288 ± 91</td>
<td>180 ± 111</td>
</tr>
<tr>
<td>甲殻類 Isopoda</td>
<td></td>
<td>3 ± 7</td>
<td>10 ± 14</td>
<td>12 ± 15</td>
<td>8 ± 9</td>
<td>24 ± 8</td>
</tr>
<tr>
<td>その他の甲殻類 The other Isopoda</td>
<td></td>
<td>122 ± 81</td>
<td>64 ± 51</td>
<td>264 ± 110</td>
<td>92 ± 33</td>
<td>112 ± 43</td>
</tr>
<tr>
<td>ヤスデ蝟 Diplodopa</td>
<td></td>
<td>58 ± 65</td>
<td>128 ± 39</td>
<td>316 ± 50</td>
<td>220 ± 60</td>
<td>96 ± 29</td>
</tr>
<tr>
<td>ムカデ類 Chilopoda</td>
<td></td>
<td>16 ± 14</td>
<td>26 ± 31</td>
<td>20 ± 20</td>
<td>28 ± 27</td>
<td>44 ± 36</td>
</tr>
<tr>
<td>コムカデ類 Symphyla</td>
<td></td>
<td>16 ± 14</td>
<td>26 ± 31</td>
<td>20 ± 20</td>
<td>28 ± 27</td>
<td>44 ± 36</td>
</tr>
<tr>
<td>昆虫類 Insecta</td>
<td></td>
<td>32 ± 62</td>
<td>140 ± 145</td>
<td>20 ± 31</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>コロムシ目 Collembola</td>
<td></td>
<td>32 ± 67</td>
<td>36 ± 40</td>
<td>60 ± 27</td>
<td>24 ± 21</td>
<td>84 ± 70</td>
</tr>
<tr>
<td>カメムシ目 Hemiptera</td>
<td></td>
<td>3 ± 7</td>
<td>12 ± 15</td>
<td>8 ± 9</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>チウゲ目 (幼虫) Lepidoptera (larvae)</td>
<td></td>
<td>6 ± 14</td>
<td>12 ± 19</td>
<td>4 ± 8</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ハエ目 Diptera</td>
<td></td>
<td>64 ± 22</td>
<td>24 ± 28</td>
<td>188 ± 280</td>
<td>12 ± 15</td>
<td>32 ± 26</td>
</tr>
<tr>
<td>ハチ目 Hymenoptera</td>
<td></td>
<td>128 ± 130</td>
<td>323 ± 94</td>
<td>368 ± 442</td>
<td>300 ± 260</td>
<td>44 ± 36</td>
</tr>
<tr>
<td>アリ科 Formicidae</td>
<td></td>
<td>32 ± 29</td>
<td>32 ± 13</td>
<td>24 ± 21</td>
<td>32 ± 13</td>
<td>8 ± 16</td>
</tr>
<tr>
<td>甲殻類 Coleoptera (larvae)</td>
<td></td>
<td>16 ± 45</td>
<td>32 ± 28</td>
<td>28 ± 31</td>
<td>28 ± 27</td>
<td>32 ± 23</td>
</tr>
<tr>
<td>甲殻類 (成虫) Coleoptera (adults)</td>
<td></td>
<td>32 ± 29</td>
<td>22 ± 9</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>その他 Others</td>
<td></td>
<td>48 ± 22</td>
<td>28 ± 12</td>
<td>24 ± 9</td>
<td>32 ± 23</td>
<td>32 ± 2.3</td>
</tr>
</tbody>
</table>

計 Total 992 ± 24 ± 381 ± 378 ± 1,360 ± 907 ± 2,028 ± 597 ± 1,372 ± 487 ± 840 ± 412 ± 1,264 ± 543 ± 1,399 ± 100.0 ± 2,820
Table 3. モミ・アラカシ天然林の大型土壌動物の現存量 (湿重量 g/m²)

Biomass of soil macrofauna in a natural forest of *Abies firma* and *Quercus glauca* (g wet weight/m²)

<table>
<thead>
<tr>
<th>動物名</th>
<th>1997</th>
<th>1998</th>
<th>1999</th>
<th>平均現存量</th>
<th>比率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>土壌動物</td>
<td>Sampling date</td>
<td></td>
<td></td>
<td>Mean biomass of the collected animals</td>
<td>Percentage in biomass</td>
</tr>
<tr>
<td>マキガイ類 Gastropoda</td>
<td>28 May - 7-8 Jul. - 27 Aug.-4 Sep.</td>
<td>25-26 May - 31 Aug. - 26 Oct. - 1 Mar. - 27 Apr.</td>
<td>0.39 ± 0.62 - 0.22 ± 0.12 - 3.52 ± 6.93 - 0.61 ± 0.83 - 0.10 ± 0.16</td>
<td>0.61</td>
<td>4.4</td>
</tr>
<tr>
<td>クモ類 Arachnida</td>
<td>0.05 - 0.06 ± 0.05 ± 0.13 ± 0.13</td>
<td>0.13 ± 0.04 ± 0.04 ± 0.03 ± 0.10 ± 0.09</td>
<td>0.21 ± 0.33 ± 0.10 ± 0.07</td>
<td>0.10</td>
<td>0.8</td>
</tr>
<tr>
<td>クモ目 Araneae</td>
<td>2.17 ± 0.30 ± 0.42 ± 0.38 ± 0.15</td>
<td>0.36 ± 0.25 ± 0.65 ± 0.57 ± 0.74 ± 0.40</td>
<td>0.34 ± 0.38 ± 0.86 ± 0.35</td>
<td>0.73</td>
<td>5.3</td>
</tr>
<tr>
<td>甲殻類 Crustacea</td>
<td>1.29 ± 1.60 ± 1.72 ± 1.64 ± 2.80 ± 5.71 ± 8.85</td>
<td>1.08 ± 0.74 ± 0.57 ± 0.65 ± 1.97 ± 2.22</td>
<td>1.73</td>
<td>12.7</td>
<td></td>
</tr>
<tr>
<td>ヤヌドカ類 Diplopoda</td>
<td>0.91 ± 0.08 ± 0.15 ± 0.45 ± 0.28</td>
<td>0.71 ± 0.65 ± 0.57 ± 0.37 ± 1.38 ± 1.43</td>
<td>0.18 ± 0.10 ± 0.35 ± 0.28</td>
<td>0.58</td>
<td>4.3</td>
</tr>
<tr>
<td>昆虫類 Insecta</td>
<td></td>
<td></td>
<td></td>
<td>0.07</td>
<td>0.5</td>
</tr>
<tr>
<td>カメムシ目 Hemiptera</td>
<td>0.84 ± 0.15 ± 0.33 ± 0.002 ± 0.01</td>
<td>0.17 ± 0.15 ± 0.05 ± 0.005 ± 0.02 ± 0.03</td>
<td>0.32 ± 0.64</td>
<td>0.15</td>
<td>11.1</td>
</tr>
<tr>
<td>チョウ目 Lepidoptera</td>
<td>1.49 ± 0.08 ± 0.16 ± 0.32 ± 0.29</td>
<td>0.04 ± 0.05 ± 0.54 ± 0.71 ± 0.05 ± 0.08</td>
<td>0.20 ± 0.08 ± 0.20 ± 0.08</td>
<td>0.34</td>
<td>2.5</td>
</tr>
<tr>
<td>ハエ目 Diptera</td>
<td></td>
<td></td>
<td></td>
<td>0.17</td>
<td>1.2</td>
</tr>
<tr>
<td>ハチ目 Hymenoptera</td>
<td>0.23 ± 0.20 ± 0.25 ± 0.09 ± 0.02</td>
<td>0.30 ± 0.33 ± 0.22 ± 0.12 ± 0.04 ± 0.03</td>
<td>0.01 ± 0.01 ± 0.23 ± 0.39</td>
<td>0.12</td>
<td>0.9</td>
</tr>
<tr>
<td>アリ科 Formicidae</td>
<td>0.28 ± 0.16 ± 0.14 ± 0.20 ± 0.31</td>
<td>0.08 ± 0.10 ± 0.29 ± 0.29 ± 0.48 ± 0.46</td>
<td>0.05 ± 0.05 ± 4.03 ± 4.68</td>
<td>0.67</td>
<td>4.9</td>
</tr>
<tr>
<td>甲虫目 Coleoptera (larvae)</td>
<td>(adult)</td>
<td>0.50 ± 0.06 ± 0.08 ± 0.09 ± 0.07</td>
<td>0.08 ± 0.06 ± 0.04 ± 0.02 ± 0.28</td>
<td>0.12 ± 0.18 ± 0.22 ± 0.27</td>
<td>0.17</td>
</tr>
<tr>
<td>その他 Others</td>
<td></td>
<td></td>
<td></td>
<td>13.61</td>
<td>100.0</td>
</tr>
</tbody>
</table>

但し＋は0.01g以下 ＋＜0.01g
ていた。現存量が最も大きかったのは1998年8月で5.7
g/m²であり、他の調査時は2.0 g/m²以下であった。生
息密度の高かった甲殻類の現存量は平均0.7 g/m²（全体
の5.3%、以下同様に表示）、ムカデ類は0.6 g/m²（4.3%）、
アリ科は0.2 g/m²（1.2%）、クモ目は0.1 g/m²（0.8%)
で、コムシ目はいずれの調査時も0.1 g/m²未満であった。
このほかマキガイ類が1998年10月に3.5 g/m²、甲虫
目が1999年4月に4.1 g/m²を記録したが、他の調査時
は0.6 g/m²以下であった。
全大型土壌動物の現存量は雨の少なかった1997年夏
に2.9 - 6.9 g/m²と少なかったが、1997年5月および
1998年5 - 10月の活動期は17.4 - 21.0 g/m²であった。
また、平均土壌湿度8.0℃の1999年3月の現存量は6.5
g/m²、土壌湿度11.3℃の4月は14.8 g/m²であり、土壌
温度の上昇とともに現存量も増加する傾向が見られた。
これらの傾向をサンプル間のばらつきが大きいため、季
節間に有意差は認められなかった。したがって、年ごとにま
まとめてスチューダントのt検定を行った結果、雨の少な
かった1997年と雨の多かった1998年の間はP = 0.002
で有意差が認められ、雨の多い方が大型土壌動物の
現存量が大きいことが明らかになった。

大型土壌動物のグループ組成と環境診断
Table 4 に年度ごとおよび全期間にわたる採集動物と
青木（1995）による評点を示した。まず年度ごとに比
較すると、雨の少なかった1997年にやや低かったが、
3年間の平均が83で、高い値を示した。3年間を通し
たデータでは「自然の豊かさ」の評価に用いる32群の

Table 4. モニ・アラカシ天然林の大型土壌動物による環境診断
Environmental diagnosis based on soil animal communities in a natural forest of Abies firma and Quercus glauca

<table>
<thead>
<tr>
<th>評点</th>
<th>Index of naturalness</th>
<th>土壌動物群</th>
<th>Soil animal group</th>
<th>年</th>
<th>Year</th>
<th>3年間の合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>5点</td>
<td>5 points</td>
<td>マキガイ類</td>
<td>Gastropoda</td>
<td>○</td>
<td>○</td>
<td>一</td>
</tr>
<tr>
<td>3点</td>
<td>3 points</td>
<td>ナガミミズ目</td>
<td>Haplotaxida</td>
<td>○</td>
<td>○</td>
<td>一</td>
</tr>
<tr>
<td>1点</td>
<td>1 point</td>
<td>ヒメ праздник</td>
<td>Encytraeidae</td>
<td>○</td>
<td>○</td>
<td>一</td>
</tr>
</tbody>
</table>

合計 Total 79 88 82 96

森経総研研究所年報 第7巻1号, 2008
うち30群が確認され、評価点は96であった。また、
採集されなかったハサミムシ類とダンゴムシ類は、調査
枠外で生息しているのを確認した。

考察

ハンドソーティング法により調査された日本各地の森
林の大型土壌動物について、新島・伊藤（1996）のま
とめるよる、常緑広葉樹林の生息密度は123～1,252
個体/m²、現存量は1.5～61.3 g/m²、落葉広葉樹林の生
息密度は27～2,481個体/m²、現存量は0.4～41.0 g/m²
と報告されている。本調査地の生息密度は840～2,660
個体/m²で、最大値に近かったが、現存量は2.9～21.0
g/m²で、最大値の3.3%程度であった。渡辺ら（1968）
は、今回と類似の方法で大型土壌動物を調査した場合、
小さい虫は見落とされる可能性が高く、採集者による有
意差が認められたが、個体重5 mg以上の虫は見落とし
が少なく、現存量については個人差が有意差なかったと
報告している。このことから、本調査地の土壌動物の生
息密度が他の照葉樹林より高い値を示したのは、著者ら
が等脚類、ムカデ類、アリ類などの小さな個体をてい
ねいに拾った可能性が考えられる。

ヤスデ類およびムカデ類の個体数が夏に増加するとい
う傾向は、東京近郊の落葉広葉樹林、照葉樹林およびア
カマツ林からも報告されているが、必ずしもすべての
林分で観察されているわけではない（松本・新島、1993）。

ミミズ類の現存量が最も多いという傾向は本調査地に
限らず、関東地方の平地林で多く報告されている。各
地のミミズ類現存量の全大型土壌動物に占める割合は、
茨城県のコラサ類で68.7%、ヒトキリ類で51.9%（新島
ら、1994）、スギ林で49.4%（Niijima、1995）、埼玉県
のコラサ林で46.2%、アカマツ林で34.4%（松本・新
島、1993）、東京都の落葉広葉樹林で83.0%、照葉樹
林で73.7%（斎藤ら、1977）となっている。ミミズ類の
現存量については多くの報告があり、世界各地の広
葉樹林では1～280 g/m²と報告されている（Lee、1985；
Tsukamoto、1985 ほか）。一方、日本の広葉樹林におけ
るミミズの現存量は0～23.1 g/m²で、海外の値に比べ
てかなり小さ（塚本、1986）、本調査地のミミズの現
存量は、1.8～16.9 g/m²で、この範囲内であった。

関東地方の平地林で全大型土壌動物の現存量に対する
ヤスデ類の現存量が占める割合は、本調査地で得られた12.7%
よりも少ない例が多く、茨城県のコラサ林で4.8%、
ヒトキリで5.2%、スギ林で3.8%（新島ら、1994）、東
京都の落葉広葉樹林で0.6%、照葉樹林で2.6%（斎藤ら、
1977）と報告されている。比較的ヤスデ類の占める割
合が多い平地林として埼玉県のコラサ林で11.6%、アカ
マツ林で23.2%（松本・新島、1993）、群馬県のスギ林
で17.9%（Niijima、1995）などが挙げられる。ヤスデ類
は地域によっては列車を止めるほど大発生することも
あるが（新島、2001；新島・有村、2002；新島・篠原、
1988；篠原、1966）、少なくとも1994～2003年の期間
はこうしたヤスデ類の異常発生はみられなかった。

大型土壌動物による環境診断法について、青木（1989、
1995）は50×50 cm²の枠3枚、計7,500 cm²の調査
が望ましいとしている。この方法でこれまで行われ
た関東周辺の環境診断の結果、常緑広葉樹林30～94、
落葉広葉樹林52～93、スギ人工林24～84、アカマツ
林40～71と評価されている（青木、1995；原田・青木、
1996：唐沢・原田、2000；大久保・原田、2006：境野
ら、2002）。今回の調査面積は1997年25×25 cm²11
枚で計6.785 cm²、1998年12枚で計7,500 cm²、1999
年8枚で計5,000 cm²で、望ましい調査面積に等しいか、
やや少なかった。それにもかかわらず、3年間の平均が
83、合計が96と高い値を示したことは、科学園のモミ・
アラカシ林の自然度はかなり高くと評価することができる。
この林分を教育的資源として活用するには、今後も
林の立ち直りを図り、必要に応じて貴重な植物種の調
査・研究の場を提供できる状態を維持することが必要で
あると考えられる。

今回、青木（1989）が提案した「大型土壌動物によ
る環境診断法」は科学園のモミ・アラカシ林の自然の豊か
さを評価するための指標として用い、期待通りの高い評
価値が得られた。調査の時期については、関東周辺では大
型土壌動物の個体数が夏に増加する傾向があり、今回の調
査でも8月にほとんどのすべてのグループが採集されて
いる。また、動物が活動する期間のほうが、休眠している
期間よりも動きが活発で発見しやすいと考えると、
夏に調査を行うのが良いと考えられる。調査面積につい
ては、渡辺ら（1968）が、大きな枠で少数調査するよ
りも、小さな枠で多数調査するほうが、同じ面積の結果
を得るために必要な調査面積が少なくて済むとの結論を
得ており、大久保・原田（2006）も小さいサンプルを
数多く採ることを提案している。これらの事実から、青
木（1989）による環境診断のための大型土壌動物調査は、
小面積で多数、夏に行えば、調査面積を減らせるなどの
簡略化が考えられる。但し、この評価法に関しては問題
点も指摘されている。大久保・原田（2006）によれば、
評点5のインシノシ類やヨコエビ類、評点3のシロアリ類、
アザミウム類、ハサミムシ類が冷帯湿の極相林ではほと
どとみられない一方、評点5のコムカデ類、ジムカデ類、
アリズカムシ類、ヤスデ類、評点3の甲虫幼虫と成虫、
イシムカデ類はきわめて高い頻度で二次林や低木林にも
出現している。従って、各動物群の配点については今後
変更される可能性もあり得る。

今回の調査により、雨の少ない年には大型土壌動物の現
存量が少なく、堆積腐植物が多いこと、ミミズ類とヤス
デ類は現存量に占める割合が高いことが明らかになった。このこと
から、今後、両グループの土壌層位別分布、別の種類や摂
食量の推定などを行うことにより、土壌動物群集の活動と

林床の堆積腐植物材との関係が明らかになると考えられる。本論文で得られた成果は、大型土壌動物の生態や機能に関する研究の基礎資料としても、また、環境教育や今後の森林管理方法にも役立つものと期待される。

謝辞
土壌動物の標本整理にご協力いただいた水谷古勝、土壌巣素の分析をはじめとして、いろいろご指導いただいた元神奈川大学の細川文次郎教授および、この研究の実施にご協力いただいた森総合研究所多摩森林科学園の方々に厚く御礼申し上げる。

引用文献
青木淳一（1973） 堆積動物学、北隆館、814p。
青木淳一（1989） 土壌動物を指標とした自然の豊かさの評価、都市化・工業化の動植物影響調査法マニュアル、千葉県、127-143。
青木淳一（1995） 土壌動物を用いた環境診断、自然環境への影響予測—結果と調査法マニュアル、沼田真編、千葉県環境部環境調整課、197-271。
原田、青木淳一（1996） 土壌動物による自然の豊かさ評価の事例、横浜国大環境科学研究所、22、81-92。
橋本みのり・新島滋子（2000） 多摩森林科学園の土壌動物に関する研究：大型土壌動物の組成による自然度の評価、日本土壌動物学会、23、8。
今立源太良（1963） 原尾目の季節消長（I），昆虫、31、235-248。
唐沢重孝・原田洋（2000） 土壌動物からみた環境保全林の自然回復過程，生態環境研究、7(1)、1-9。
北沢右三（1973） 土壌動物生態学，共立出版，158p。
松本久二・新島滋子（1993） アカマツ林及びコナラ林における落葉落枝の分解と大型土壌動物の季節変動，森総研研報，364、51-68。
松本和馬（2006） 森林総合研究所多摩森林科学園のチョウ相，森総研研報，5、69-84。
松本和馬・三井健由・鳥居隆史（2007） 森林総合研究所多摩森林科学園の双翅目昆虫相，森総研研報，6、77-88。
新島滋子（2001） ヤケヤダ列車を止める，Edaphologia，68、43-46。
新島滋子・有村利浩（2002） ヤンバルトサカヤダスによる列車妨害記録，Edaphologia，69、47-49。
新島滋子・橋本みのり（2000） 多摩森林科学園の土壌動物に関する研究 1. 大型土壌動物の個体数、現存量の変動と環境との関係，日地動物会講演、23、7。
新島滋子・藤田桂治・松本久二（1994） 汚泥堆肥類の施用に伴う林地の土壌動物の変化とその影響，Edaphologia，52、33-51。
新島滋子・伊藤雅道（1996） 森を支える土壌動物，林業科学技术振興所，101p。
新島滋子・水谷古勝（2003） 多摩森林科学園の土壌動物に関する研究 1. ササラダニ類，森総研研報，2、53-60。
新島滋子・篠原圭三郎（1988） キャンピオン類の大発生，日生態誌，38、257-268。
大久保徹・原田洋（2006） 大型土壌動物による冷温帯域の自然性の評価，生態環境研究，13(1)、1-12。
齐藤晋・寺田美奈子・藤原則子（1977） 武蔵村山市海道の二次林と明治神宮の森林における大型土壌動物の現存量“各種生態系における野生動物の現存量に関する研究報告書 昭和52年 3月” 北沢右三編，立教大学，65-80。
篠原圭三郎（1966） ヤスデ列車をとめる。遺伝，20 (9)、24-29。
塚本次郎（1986） 我国の森林の落葉消失に果たすミミズの役割評価について－ヨーロッパとの比較を中心にして，森林立地，28 (1)、1-10。
渡辺弘之・菊池喜八郎・四手井勲英（1968） ブナ天然林における大型土壌動物の密度および現存量の推定法について，京大演習林報，40、1-6。