熱帯産造林木の材質 第2報
パプア・ニューギニア産カメレレ

要旨：パプア・ニューギニア国ニューリィテインのケラバット、ホスキンス、ブプシ、モサ、タバウ・リカウなど各地产のカメレレ（Eucalyptus deglupta BLUM.）の造林木について、基礎材質ならびに加工的性質について試験を行った。

試料木の数は27個体で、その丸太の数は74本である。試験した項目は解剖学的性質、容積重、収縮率、吸水量、強度、帯のこによる鋸断性、ひき材の乾燥性、単板切削、単板の接着性、パルプ化などである。

容積密度数は6年生で268〜405 kg/m³、18年生で282〜527 kg/m³である。後者のように樹齢が高くなると、容積密度数は胸から半径10〜15 cmの範囲まではほぼ一定で、その後外側に向かって高くなる傾向が見られる。静的曲げ強度性能も容積密度数と同様な傾向をもつが衝撃曲げ吸収エネルギーの値は樹皮付近で他に比較して著しく低い値を示す。吸水係は国産樹種の低吸のものに匹敵する。帯のこによる鋸断性は問題はないといえよが、樹齢の若い部分が多いため挽き材後の曲りを考慮しなければならない。ひき材の乾燥は容易で、速度は速い。単板の切削では、条件を適切にすれば裏割れや面あらさなどが利用上支障のない程度のものが得られる。ウリア樹脂接着剤による接着は良好であったが、フェノール樹脂接着剤の場合、部分的に接着性の劣る傾向があった。強度的性能が要求されない用途の合板ならば製造できる。クラフト法によって容易にパルプ化されたが、国産材に比較して薬液消費量が高い。

目次

はじめに……………………………………………………………………………………………………106

I 試験木…………………………………………………………………………………………………106

II 解剖学的性質………………………………………………………………………………………110

III 容積重、収縮率……………………………………………………………………………………122

IV 吸水性および吸水量………………………………………………………………………………137

V 強度的性質………………………………………………………………………………………140

VI 帯のこによる鋸断性………………………………………………………………………………149

II ひき材の乾燥性……………………………………………………………………………………155

VII 単板切削…………………………………………………………………………………………158

VIII 単板の接着性……………………………………………………………………………………166

IX パルプ試験………………………………………………………………………………………170

要約………………………………………………………………………………………………………175

引用文献………………………………………………………………………………………………178

Summary……………………………………………………………………………………………181

1987年3月2日受理
(1) 木材部 木材利用部 林産化学部

木材—54 Wood Technology—54
林産化学—43 Forest Product Chemistry—43
木材利用—52 Wood Utilization—52
はじめに

カメレレ（Eucalyptus deglupta BLUM.）は、フィリピン（ミンダナオ）、インドネシア（セラム、スラウェシ）、ニューギニアの一部、ニューブリテン、ニューアイルランド、マヌスなどに天然分布することが知られている。その分布が不連続なことおよびオーストラリアには分布していないことなどで、珍しいユーカリの一つとされている。

カメレレは東南アジアから太平洋地域の熱帯諸国にわたって植栽され、広葉樹のなかでは造林面積が最も広い樹種といえる。したがって、この造林木利用のための基礎となる資料は、今後の木材利用のみならず造林樹種の選定に当たっても大きな役割をはたすことであろう。

すでに、当場においては1974～1976年度にわたり、科学技術庁特別研究促進調整費によるパプア・ニューギニア産未利用樹種の利用技術に関する総合研究を行い、主として天然分布の樹種について、その基礎材質ならびに加工技術に関する成果を発表している。カメレレの天然木と少量の造林木がその研究対象樹種に含まれていた。

ここでは、1979年、1981年および1983年の3回にわたって採集したカメレレ造林木について、その基礎材質ならびに加工利用的性質について調査した結果を報告する。

調査項目は、試料によって異なるが、解剖学的性質、容積重、収縮率、吸水量、強度、帯のこによる鋸断性、ひき材の乾燥性、単板切削、単板の接着性、パルプ化などである。

Ⅰ 試験木

１．ニューブリテンのカメレレ造林

カメレレの人工造林は、フィリピン、インドネシア、パプア・ニューギニア、フィジーなど広い範囲にわたって行われている。ニューブリテンではカメレレが人工造林され始めたのは1948年で、場所は今回の試験木の採集地の一つであるケラバット（Keravat）であるとされている。

現在最も広い面積をもつのは、西ニューブリテンのホスキンス周辺の造林地であろう。その中でも、スティティンベイ・ランパー社の所有する造林地はすでに1986年現在で、1,702 ha に達している。なお、同社では、カメレレの場合輪伐期は20年で、その際の平均胸高直径は60～70 cm、平均樹高50～60 m、予想収穫立木材積700～1000 m³/ha としている。

２．試験木の概要

試験に用いた個体および丸太の平均直径、樹齢、採取年、採取地、さらに一部については植栽間隔などTable 1 に示した。試験に用いた丸太は27個体から採取した74本である。採取地のうち Keravat（Photo 1）はニューブリテンの北端のラパウルの南西に位置し、その他の採取地はニューブリテン西部の Hoskins（Photo 2）および Buvussi, Mosa（Photo 3）、Tabau rikau などその近辺の地域である。

なお、試験木の入手に際しては Keravat 産についてはマルニ木工株式会社、その他についてはステッテンベイ・ランパー、日南岩井株式会社、山陽国策パルプ株式会社の各社のご協力を頂いた。 須藤彰司
Photo 1. カメレレ造林地 ケラバット
Kamerere plantation in Keravat.

Photo 2. カメレレ造林地 ホスキンス
Kamerere plantation in Hoskins.
Table 1. Descriptions of sample trees and logs.

<table>
<thead>
<tr>
<th>地</th>
<th>試験木記号</th>
<th>Log No.</th>
<th>平均直径(cm)</th>
<th>樹齢</th>
<th>採取年</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>ケラバット Keravat</td>
<td>E</td>
<td>1</td>
<td>50</td>
<td>18</td>
<td>1979</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ホスキンス Hoskins</td>
<td>a-1</td>
<td>1</td>
<td>15</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a-2</td>
<td>5</td>
<td>19</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>15</td>
<td>1981</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a-3</td>
<td>10</td>
<td>19</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a-4</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a-5</td>
<td>16</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a-6</td>
<td>17</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a-7</td>
<td>18</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a-8</td>
<td>19</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a-9</td>
<td>20</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ホスキンス Hoskins</td>
<td>b-1</td>
<td>21</td>
<td>15</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b-2</td>
<td>25</td>
<td>17</td>
<td>5</td>
<td>1981</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b-3</td>
<td>29</td>
<td>17</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1. (つづき) (Continued)

<table>
<thead>
<tr>
<th>産地</th>
<th>試験木記号</th>
<th>丸太番号</th>
<th>平均直径(cm)</th>
<th>樹齢(Year)</th>
<th>採取年</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>ホスキンス</td>
<td>b-4</td>
<td>33</td>
<td>18</td>
<td></td>
<td>5</td>
<td>1981</td>
</tr>
<tr>
<td></td>
<td>b-5</td>
<td>34</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b-6</td>
<td>35</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b-7</td>
<td>36</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b-8</td>
<td>37</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b-9</td>
<td>38</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ホスキンス</td>
<td>c-1</td>
<td>39</td>
<td>17</td>
<td></td>
<td>4</td>
<td>1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>41</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>42</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c-2</td>
<td>43</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c-3</td>
<td>44</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>モサ</td>
<td>d</td>
<td>45</td>
<td>23</td>
<td>11</td>
<td>1981</td>
<td></td>
</tr>
<tr>
<td>タバウリカウ</td>
<td>T</td>
<td>T-1</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-5</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-6</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-7</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-8</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-9</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>モサ</td>
<td>M</td>
<td>M-1</td>
<td>33</td>
<td>12</td>
<td>1983</td>
<td>15ft x 15ft</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-5</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-6</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-7</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>モサ</td>
<td>M</td>
<td>M-11</td>
<td>36</td>
<td>11</td>
<td>1983</td>
<td>15ft x 15ft</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-12</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-13</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-14</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-15</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-16</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-17</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-18</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-19</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1. (つづき) (Continued)

<table>
<thead>
<tr>
<th>Origin</th>
<th>植物名</th>
<th>Sample tree</th>
<th>Log No.</th>
<th>平均直径(cm)</th>
<th>樹齢(Year)</th>
<th>採取年</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>プブシ</td>
<td>Buvussi</td>
<td>B -11</td>
<td>32</td>
<td>7</td>
<td>1983</td>
<td>4m x 4m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-12</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-13</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-14</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-15</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-16</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B -21</td>
<td>22</td>
<td>6</td>
<td>1983</td>
<td>4m x 4m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-22</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-23</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-24</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-25</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-26</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-27</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Photo 3. モサからの試料丸太
Sample logs from Mosa.

II. 解剖学的性質

I. 試験材と観察方法
ホスキンス産6年生2個体、5年生1個体、ケラパット産18年生1個体からそれぞれ地上高3、6、9。
13, 16 m, 3, 6, 9, 13 m, および 0.2, 3, 12, 18 m から厚さ 5 cm の円板を採取し、樹心を通る幅 3 ～5 cm の材片を木取り、試験木により樹心から 1 cm ごとあるいは 1, 3, 5, 7, 10, 13, 15, 17, 20, 23, 25 cm ごとに試料作製用のブロックを採取した。検鏡用プレパラートは正常法により作製した。繊維長と道管要素長は、この試験片からマッチ軸木状の材片を作り Jeffrey 氏法により解離した。繊維長はそれぞれ 50 ～100 本、道管要素長は 20 ～30 本を測定した。なお、道管径の測定についてはホスキンス産では解離した試料で行ない、ケラパット産は横断面の切片で行なった。また、繊維細胞の直径と壁厚の測定は後者について横断面切片を用い、それぞれ 30 順細胞について測定した。

2. 観察結果と考察

(1) 肉眼的性質

4 本の供試個体のうち直径が小さく、樹令が低いホスキンス産材では心材色が淡灰褐色で、肌目はやや粗である。しかし樹齢が 18 年とされているケラパット産材の心材色はやや赤味を帯びた褐色で、肌目はやや精である。しかし、それでも樹齢の高い天然木と比較すると、より淡色で、肌目はより粗であった。辺材は淡灰白色で、その幅は狭く、元口で 3 ～4 cm、末口で 1 ～3 cm である。交錯木理があらわれる。なお、ケラパット産材の円板の外側の部分に生長輪状のものが見られた（Photo 4-2）。

(2) 顕微鏡的性質

顕微鏡的性質についての記載は、すでに 2, 3, 4) 行なわれており、とくに DADSWELL は世界のユーカリ属の解剖学的性質の総括的な記載をするなかでとりあげている。この報告ではケラパット産材の成熟材とみなされる部分について観察した結果を述べる。なお、ここでいう成熟材部とは要素の寸度が安定し始め る樹心から 15 cm より外側の部位をさしている。

構成要素は道管要素、繊維、周囲仮道管、放射柔細胞、軸方向柔細胞からなる。3 断面の顕微鏡写真を Photo 4-1～5 に示した。

A) 道管

配列は 2 ～数個、斜方向にジグザグに配列する傾向が強く鏡状配列といえる。孤立管孔がほとんどで複合するものは非常に少ない。直径は放射方向 170 ～291 ～370 μm、接線方向 130 ～220 ～310 μm である。1 mm² における分布数は 6 ～7 個である。単穿孔をもつ。道管の周囲をとりまいて周囲仮道管が存在する。ベスチャード壁孔をもち、その径は 5 ～8 μm である。チェロースをもつ。

B) 繊維

長さは 900 ～1347 ～1800 μm、直径 14 ～17.3 ～22 μm、壁厚は 1.5 ～3.0 ～5.0 μm である。直径 5 ～8 μm の有縁壁孔が多数存在する。

C) 放射組織

単列であるが、ときに 2 列まれに 3 列部を有することがある。3 ～25 細胞高に達する。ほとんど平伏細胞からなる同性といえるが、ときに直立ないし方形細胞も現れる場合がある。道管-放射組織間の壁孔は直径が 18 μm に達するものがあり、単壁孔でその形はだ円ないし四角ばっている。

D) 軸方向柔組織

周囲柔組織と散在柔組織からなる。多室結晶細胞があり、方形の結晶が鏡状につるる。周囲仮道管の間には線するものがある。

E) 周囲仮道管
1. Cross section of the innermost part of stem. Showing pores, small and numerous.

2. Cross section of the outer-part of stem. Showing pores, large and less numerous. (Arrow)

3. Tangential section.

4. Radial section.

5. Cross section.

Photo 4. ケラバット産試験木, 地上高 0.2 m
At 0.2 m from ground level of the stem of a sample tree from Keravat.
周囲柔細胞が混在することがある。

(3) 組織構造の幹内における変異について

繊維細胞や導管要素などの寸度が幹内でどのように変異しているか樹心からの距離ならびに高さ方向について検討した。

4個体の各円板の樹心からの距離による要素の寸度の変異をTable 2-4およびFig. 1-8に示した。これによれば各要素は樹心からの距離によって一定の傾向をもって変異していることがわかる。

A）繊維細胞

繊維長はFig. 1-4に示したように各個体とも樹心付近で最も短く、その長さは個体や樹高によって多少異なる。各円板の樹心付近の平均長は580～750μmの範囲であり、これより外側へ急増する。円板径の大きいケラパト産材では樹心から15～20cmまで急激に伸長して、それ以後伸長はゆるやかになり安定する。その安定する部位の平均繊維長は1300～1450μmの範囲である。なお樹令が5～6年生と低く、円板径の小さい他の試料ではFig. 2-4に示したように繊維長は短かく未だ安定していない。

つぎに繊維細胞の直径と壁厚について見ると、直径の樹心から外側への変異はTable 2およびFig. 7で示したように樹心付近も外側もあまり変わらなく15～20μmの範囲で多少の変異を示す程度である。これに対して壁厚は樹心から外側へ徐々に厚くなり10cm以後急増している。樹心付近で約1.5μmであるが、10cm付近で2μm近くになり、それより外側へ急激に厚さを増し、4.5μmに達する場合もある。このように繊維の直径がほとんど変化せず、壁厚だけ著しく増加することは、必然的に繊維の細胞壁率の増加をもたらし比重の増大につながるものと考えられる。ちなみに中野A)はニューギニア産カメ
Fig. 1. 樹心からの距離による繊維長の変動
Fiber length variation with distance from pith.
()：採材高 Height from ground level (m).

Fig. 2. 樹心からの距離による繊維長の変動
Fiber length variation with distance from pith.
Fig. 3. 樹心からの距離による繊維長の変動
Fiber length variation with distance from pith.

Fig. 4. 樹心からの距離による繊維長の変動
Fiber length variation with distance from pith.
表2 ケラバット産材（E）の解剖学的性質の変動

Anatomical characteristics at different levels within the sample tree（E in Table 1）。

<table>
<thead>
<tr>
<th>採材高</th>
<th>樹心からの距離</th>
<th>繊維</th>
<th>Vessel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>Distance from pith</td>
<td>Fiber</td>
<td>Vessel</td>
</tr>
<tr>
<td>(m)</td>
<td>(cm)</td>
<td>Length</td>
<td>Diameter (Mean)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wall thickness (Mean)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Radial</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
<td>578</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>666</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>866</td>
<td>570</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>996</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1099</td>
<td>730</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1211</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1244</td>
<td>930</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1280</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1333</td>
<td>1030</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1334</td>
<td>1040</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1413</td>
<td>1100</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1464</td>
<td>1120</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1259</td>
<td>1000</td>
</tr>
<tr>
<td>3.0</td>
<td>0</td>
<td>624</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>742</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>961</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1025</td>
<td>780</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1116</td>
<td>850</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1120</td>
<td>920</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1262</td>
<td>1060</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1317</td>
<td>1030</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1417</td>
<td>1130</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1408</td>
<td>1140</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1448</td>
<td>1100</td>
</tr>
<tr>
<td>採材高 (m)</td>
<td>樹心からの距離 (m)</td>
<td>繊維</td>
<td>ファイバー</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>12.0</td>
<td>0</td>
<td>654</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>776</td>
<td>540</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>862</td>
<td>540</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>969</td>
<td>760</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1012</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1204</td>
<td>820</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1228</td>
<td>920</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1354</td>
<td>1060</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1298</td>
<td>1020</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1290</td>
<td>960</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1289</td>
<td>1020</td>
</tr>
<tr>
<td>18.0</td>
<td>0</td>
<td>685</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>699</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>912</td>
<td>670</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>981</td>
<td>740</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1099</td>
<td>760</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1230</td>
<td>940</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1283</td>
<td>980</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1361</td>
<td>1130</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1393</td>
<td>1060</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1385</td>
<td>1180</td>
</tr>
</tbody>
</table>
Table 3. ホスキンス産材 (a-2) の解剖学的性質の変動
Anatomical characteristics at different levels within the sample tree (a-2 in Table 1) from Hoskins.

<table>
<thead>
<tr>
<th>サンプル</th>
<th>樹心からの距離</th>
<th>樹心からの距離</th>
<th>細胞長</th>
<th>細胞長</th>
<th>細胞長</th>
<th>細胞長</th>
<th>細胞長</th>
<th>細胞長</th>
<th>細胞長</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>0</td>
<td>645</td>
<td>510</td>
<td>820</td>
<td>77.7</td>
<td>12.0</td>
<td>118</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>786</td>
<td>640</td>
<td>1040</td>
<td>91.4</td>
<td>11.6</td>
<td>170</td>
<td>328</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>893</td>
<td>780</td>
<td>1060</td>
<td>73.2</td>
<td>8.2</td>
<td>188</td>
<td>318</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>930</td>
<td>750</td>
<td>1140</td>
<td>90.7</td>
<td>9.8</td>
<td>194</td>
<td>327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>943</td>
<td>730</td>
<td>1160</td>
<td>101.4</td>
<td>10.8</td>
<td>219</td>
<td>363</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>967</td>
<td>780</td>
<td>1160</td>
<td>87.7</td>
<td>9.1</td>
<td>226</td>
<td>374</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1103</td>
<td>900</td>
<td>1370</td>
<td>116.6</td>
<td>10.6</td>
<td>245</td>
<td>362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1148</td>
<td>930</td>
<td>1360</td>
<td>106.8</td>
<td>9.3</td>
<td>231</td>
<td>446</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1182</td>
<td>960</td>
<td>1380</td>
<td>107.2</td>
<td>9.1</td>
<td>240</td>
<td>440</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1196</td>
<td>950</td>
<td>1440</td>
<td>109.1</td>
<td>9.1</td>
<td>248</td>
<td>497</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1279</td>
<td>940</td>
<td>1590</td>
<td>132.1</td>
<td>10.3</td>
<td>249</td>
<td>518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.0</td>
<td>0</td>
<td>743</td>
<td>630</td>
<td>920</td>
<td>70.8</td>
<td>9.5</td>
<td>132</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>826</td>
<td>710</td>
<td>1000</td>
<td>89.4</td>
<td>10.8</td>
<td>164</td>
<td>323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>923</td>
<td>770</td>
<td>1100</td>
<td>86.2</td>
<td>9.3</td>
<td>182</td>
<td>332</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1002</td>
<td>920</td>
<td>1600</td>
<td>74.4</td>
<td>7.4</td>
<td>238</td>
<td>350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1048</td>
<td>940</td>
<td>1140</td>
<td>59.1</td>
<td>5.6</td>
<td>230</td>
<td>390</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1074</td>
<td>900</td>
<td>1340</td>
<td>92.3</td>
<td>8.6</td>
<td>246</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1073</td>
<td>920</td>
<td>1300</td>
<td>96.3</td>
<td>9.0</td>
<td>248</td>
<td>404</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1141</td>
<td>910</td>
<td>1300</td>
<td>101.7</td>
<td>8.9</td>
<td>249</td>
<td>404</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1152</td>
<td>970</td>
<td>1400</td>
<td>104.7</td>
<td>9.1</td>
<td>232</td>
<td>414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.0</td>
<td>0</td>
<td>718</td>
<td>650</td>
<td>830</td>
<td>63.7</td>
<td>8.9</td>
<td>133</td>
<td>326</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>944</td>
<td>770</td>
<td>1120</td>
<td>72.4</td>
<td>7.7</td>
<td>182</td>
<td>319</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>957</td>
<td>800</td>
<td>1100</td>
<td>75.1</td>
<td>7.8</td>
<td>193</td>
<td>360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1031</td>
<td>800</td>
<td>1120</td>
<td>93.4</td>
<td>9.1</td>
<td>207</td>
<td>343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1049</td>
<td>850</td>
<td>1210</td>
<td>103.5</td>
<td>9.9</td>
<td>234</td>
<td>390</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1063</td>
<td>840</td>
<td>1280</td>
<td>107.3</td>
<td>9.9</td>
<td>222</td>
<td>403</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

レレ天然木の比重の乾燥内分布を求め樹心から外側へ増大することを報告している。また今回ケラパッ卜産材で求めた比重は次の章で示すように各円板とも樹心付近で小さく、それより10 cm くらいまで変異は小さいが、これより外側では、直線的に増加している。これは細胞の壁厚が樹心より10 cm を通ると急激に厚くなることとよく合致している。このように細胞細胞の壁厚と壁率の樹心から外側への増加についてはすでにいくつかの樹種で報告されている。B) 道管

道管要素の長さは Fig. 5, 6 に示したように樹心付近で最も短かく、230～300 μm で、それより外側へゆるやかに伸長すると樹心より15 cm 付近で安定し、おおむね 2 倍の 500 μm に達する。その伸長の
Table 4. ホスキンス産材（a-3）の解剖学的性質の変動
Anatomical characteristics at different levels within the sample tree (a-3 in Table 1)

<table>
<thead>
<tr>
<th>採材高 from ground level (m)</th>
<th>樹心からの距離 from Pith (cm)</th>
<th>繊維長 Fiber Length</th>
<th>道管 Vessel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Mean (μm)</td>
<td>Minimum Min. (μm)</td>
<td>Maximum Max. (μm)</td>
</tr>
<tr>
<td>3.0</td>
<td>0</td>
<td>675</td>
<td>530</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>796</td>
<td>640</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>868</td>
<td>740</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>892</td>
<td>770</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1017</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>966</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1041</td>
<td>910</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1082</td>
<td>840</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1148</td>
<td>960</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1216</td>
<td>1040</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1209</td>
<td>1030</td>
</tr>
</tbody>
</table>

9.0	0	612	510	680	49.3	7.0	122	290
	1	792	650	920	71.1	9.0	166	323
	2	898	700	1030	82.9	9.2	182	355
	3	905	760	1080	85.6	9.5	189	363
	4	1040	870	1360	111.7	10.8	239	403
	5	1060	940	1280	96.0	9.0	248	398
	6	1070	940	1240	106.2	9.9	266	365
	7	1137	1000	1360	107.0	9.4	236	405
	8	1168	980	1420	105.3	9.0	241	375

16.0	0	639	540	780	59.4	9.3	117	240
	1	711	610	830	56.6	8.0	163	290
	2	811	640	940	74.8	9.2	257	352
	3	908	760	1100	96.0	10.4	190	365
	4	1020	760	1180	104.2	10.2	241	398
	5	1090	910	1280	96.8	9.1	245	395
	6	1135	960	1400	100.1	8.8	213	410

経過は繊維長の伸長のそれとよく似ている。

直径と分布数の変異を見ると、直径は樹心付近で最も小さく、せいぜい 60～80μm であるが外側へむかって急増し、樹心から 10 cm 付近で 200μm 近くに達し、それ以後安定する。一方、分布数は直径の変異とは逆で、樹心付近で最も多く、23～27/mm² であり、それより外側へむかって急減し 10 cm 付近で 1～7/mm² となり、これより外側では一定となる。このような道管要素の樹心からの変異の傾向はしばしば他の樹種にも認められる現象である5, 8)。軸方向の変異を調べるため円板の採材高別に比較して見たが繊維および道管の各寸度の絶対値ならびに樹心から外側への変異の経過も Fig. 1～6 に高さ別に示し
Fig. 5. 樹心からの距離による繊維長と透管要素長の変動
Length variation of fiber and vessel element with distance from pith.

Fig. 6. 樹心からの距離による繊維長と透管要素長の変動
Length variation of fiber and vessel element with distance from pith.
Fig. 7. Variation of cell diameter and cell wall thickness of fiber with distance from pith.

Fig. 8. Variation of distribution No./mm² and diameter of vessel with distance from pith.
たように非常によく似ている。Bisset は Eucalyptus regnans で繊維長の樹幹内分布を求め、繊維長が長くなり、安定する部位を樹高で 15 m 付近、樹令で 30 年以後と報告しているが今回の観察結果からは樹高による明らかな差異を見いだせなかった。

須川豊伸

III. 容積重、収縮率

容積重、収縮率など、主要な材質指標の値の個体内および個体間変動を求めた。

1. 試験材と測定方法

（1）試験材

今回の試験には、樹齢、産地の異なる 23 個体、丸太総本数 51 本（丸太の長さ 3 m）の供試材を選定した。その内訳は、ホスキンス産の 6 年生 9 個体、丸太数にして 20 本、5 年生 9 個体、丸太数 18 本、4 年生 3 個体、丸太数は 6 本、モサ産の 11 年生 1 個体、1 本、およびケラバット産の 18 年生、1 個体、丸太数は 6 本である。このうち、地際から地上高別に採材された丸太については、地上高 2.7～3 m の部分を基準とし、それ以上の高さの丸太からは、順次、約 2 m ごとに円板を採取した。また、ケラバット産の試験木（丸太数 6 本）については、地際から 0.3、1.2、3、6、9、12、15、18 m の高さの位置から、合計 8 個の円板を採取した。そのほかの試験木は、1 個体について 1 本ずつ採たので、元日（1 番玉）から約 3 m の位置から、円板をそれぞれ 1 枚ずつ採取した。

（2）測定方法

測定方法は、収縮率、容積密度数、年輪構造のいずれの項目についても、前報と同様である。

2. 結果と考察

（1）容積重および収縮率

供試個体別に、容積密度数、気乾時の容積重（含水率 15%）、全乾容積重および生材から気乾、生材から全乾までの接線、半径、軸方向の収縮率、容積収縮率、T/R（全乾時）の値を求めた。ホスキンス産材とモサ産材の平均値、最大値、最小値、標準偏差を樹齢別にとりまとめて、Table 5 に示す。また、ケラバット産の丸太については、丸太の地上高別にそれぞれの値を求め、Table 6 に示す。

丸太直径と容積密度数：今回の供試木の最小丸太径はホスキンス産の 7 cm からケラバット産の 53 cm の範囲にある。Fig. 9 に丸太の直径と各丸太の容積密度数の平均値との関係を示す。図から明らかのように、直径と容積密度数との間に関係がないことがわかる。

容積密度数：ホスキンス産材 21 個体、44 本の丸太（11 年生のモサ産材も含む）とケラバット産材の容積密度数の出現頻度分布を求め、Fig. 10 に示す。

ホスキンス産、全供試丸太の容積密度数は、269 kg/m³ から 511 kg/m³ の範囲にあり、その平均値は 338 kg/m³ である。また、容積密度数の個体間における差異については、最も大きい個体は、5 年生の b-1 の 402 kg/m³、特にそのなかでも、No. 23 の丸太は、444 kg/m³ を示す。一方、最も低い個体は、a-5 の 295 kg/m³ で、両者で約 100 kg/m³ の差があり、個体による変動が大きい樹種であるといえる。モサ産材（11 年生）は、容積密度数の平均値が 359 kg/m³（339～381 kg/m³）、ケラバット産材の樹幹全体（丸太数 6、測定箇所 8）の平均値は、容積密度数 369 kg/m³（278～527 kg/m³）である。

収縮率：ホスキンス産の全供試丸太の平均値とその範囲は、接線方向、半径方向、軸方向それぞれ、6.3%（4.8～9.0%）、3.6%（2.0～5.8%）、0.30%（0.12～0.55%）、T/R は 1.8%（1.0～2.6%）である。
Fig. 9. 丸太の直径と容積密度数との関係
Relation between sample log diameter and basic density.

Fig. 10. 容積重の出現頻度
Histogram of basic density.
<table>
<thead>
<tr>
<th>試験木</th>
<th>丸太番号</th>
<th>直径</th>
<th>代表値</th>
<th>収縮率</th>
<th>密度</th>
<th>T/R</th>
<th>番丸</th>
<th>号太</th>
<th>直径</th>
<th>代表値</th>
<th>収縮率</th>
<th>密度</th>
<th>T/R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>t 方向</td>
<td>r 方向</td>
<td>l 方向</td>
<td>t 方向</td>
<td>r 方向</td>
<td>l 方向</td>
<td>t 方向</td>
<td>r 方向</td>
<td>l 方向</td>
<td></td>
</tr>
<tr>
<td>a-1</td>
<td>n</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>3.10</td>
<td>1.60</td>
<td>0.54</td>
<td>0.26</td>
<td>0.16</td>
<td>0.05</td>
<td>7.01</td>
<td>4.00</td>
<td>1.27</td>
<td>10.95</td>
<td>348.3</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>Min.</td>
<td>2.15</td>
<td>0.57</td>
<td>0</td>
<td>0.19</td>
<td>0.10</td>
<td>0.01</td>
<td>5.15</td>
<td>2.02</td>
<td>0.17</td>
<td>7.21</td>
<td>293.7</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>2.61</td>
<td>1.09</td>
<td>0.03</td>
<td>0.23</td>
<td>0.14</td>
<td>0.02</td>
<td>5.98</td>
<td>3.10</td>
<td>0.31</td>
<td>9.12</td>
<td>323.6</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>S.D.</td>
<td>0.34</td>
<td>0.27</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.62</td>
<td>0.53</td>
<td>0.10</td>
<td>1.09</td>
<td>15.8</td>
<td>0.02</td>
</tr>
<tr>
<td>a-2</td>
<td>n</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>3.83</td>
<td>1.66</td>
<td>0.15</td>
<td>0.29</td>
<td>0.20</td>
<td>0.03</td>
<td>7.84</td>
<td>4.61</td>
<td>0.61</td>
<td>12.12</td>
<td>442.0</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Min.</td>
<td>1.94</td>
<td>0.85</td>
<td>0</td>
<td>0.19</td>
<td>0.12</td>
<td>0.01</td>
<td>4.78</td>
<td>2.64</td>
<td>0.16</td>
<td>7.8</td>
<td>277.7</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>2.78</td>
<td>1.22</td>
<td>0.04</td>
<td>0.23</td>
<td>0.15</td>
<td>0.02</td>
<td>6.14</td>
<td>3.46</td>
<td>0.31</td>
<td>9.77</td>
<td>337.4</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>S.D.</td>
<td>0.56</td>
<td>0.26</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.78</td>
<td>0.50</td>
<td>0.10</td>
<td>1.27</td>
<td>37.1</td>
<td>0.05</td>
</tr>
<tr>
<td>a-3</td>
<td>n</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>4.06</td>
<td>2.21</td>
<td>0.23</td>
<td>0.3</td>
<td>0.21</td>
<td>0.03</td>
<td>7.55</td>
<td>5.12</td>
<td>0.62</td>
<td>12.37</td>
<td>397.2</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>Min.</td>
<td>1.90</td>
<td>0.27</td>
<td>0</td>
<td>0.21</td>
<td>0.12</td>
<td>0.01</td>
<td>8.11</td>
<td>2.57</td>
<td>0.12</td>
<td>7.63</td>
<td>200.9</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>2.80</td>
<td>1.25</td>
<td>0.04</td>
<td>0.24</td>
<td>0.16</td>
<td>0.02</td>
<td>6.34</td>
<td>3.64</td>
<td>0.20</td>
<td>10.04</td>
<td>341.6</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>S.D.</td>
<td>0.51</td>
<td>0.31</td>
<td>0.05</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.73</td>
<td>0.31</td>
<td>0.10</td>
<td>1.14</td>
<td>25.6</td>
<td>0.03</td>
</tr>
<tr>
<td>a-4</td>
<td>n</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>3.68</td>
<td>1.90</td>
<td>0.11</td>
<td>0.31</td>
<td>0.20</td>
<td>0.02</td>
<td>8.14</td>
<td>4.81</td>
<td>0.44</td>
<td>12.73</td>
<td>324.3</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>Min.</td>
<td>1.78</td>
<td>0.73</td>
<td>0.03</td>
<td>0.22</td>
<td>0.14</td>
<td>0.01</td>
<td>5.00</td>
<td>2.87</td>
<td>0.20</td>
<td>7.84</td>
<td>268.5</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>2.66</td>
<td>1.24</td>
<td>0.04</td>
<td>0.25</td>
<td>0.17</td>
<td>0.02</td>
<td>6.36</td>
<td>3.73</td>
<td>0.29</td>
<td>10.00</td>
<td>300.7</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>S.D.</td>
<td>0.68</td>
<td>0.43</td>
<td>0.06</td>
<td>0.04</td>
<td>0.02</td>
<td>0.01</td>
<td>1.15</td>
<td>0.70</td>
<td>0.09</td>
<td>1.76</td>
<td>20.2</td>
<td>0.03</td>
</tr>
<tr>
<td>試験木 Sample tree</td>
<td>丸番 No.</td>
<td>大号 Log No. (本)</td>
<td>直径 Log diameter (cm)</td>
<td>代表値 Representative figures</td>
<td>α₁ α₂ α₃</td>
<td>收縮率 Shirinkage</td>
<td>容積重 Density (kN/m³)</td>
<td>T/R (g/cm³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a-5</td>
<td>16 (1)</td>
<td>17</td>
<td>n</td>
<td>6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</td>
<td>3.60 1.64 0.12 0.30 0.18 0.02 7.82 4.33 0.41 12.20</td>
<td>316.1 0.35 0.38 2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 (1)</td>
<td>20</td>
<td>n</td>
<td>6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</td>
<td>4.53 1.58 0.14 0.30 0.19 0.03 8.78 4.36 0.5 13.18</td>
<td>406.2 0.47 0.5 2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a-6</td>
<td>18 (1)</td>
<td>16</td>
<td>n</td>
<td>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</td>
<td>3.58 1.41 0.04 0.26 0.17 0.10 7.30 4.02 1.49 11.15</td>
<td>372.8 0.42 0.45 2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a-7</td>
<td>19 (1)</td>
<td>18</td>
<td>n</td>
<td>6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</td>
<td>2.44 0.95 0.02 0.20 0.13 0.01 5.24 2.96 0.22 8.10</td>
<td>284.0 0.32 0.34 1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 (1)</td>
<td>20</td>
<td>n</td>
<td>6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</td>
<td>3.06 1.19 0.05 0.23 0.16 0.02 6.37 3.54 0.28 10.00</td>
<td>294.8 0.33 0.35 1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18 (1)</td>
<td>16</td>
<td>n</td>
<td>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</td>
<td>3.07 1.00 0 0.24 0.13 0.01 6.52 2.97 0.18 9.58</td>
<td>334.0 0.37 0.4 2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19 (1)</td>
<td>18</td>
<td>n</td>
<td>6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</td>
<td>3.00 1.13 0 0.24 0.15 0.01 6.44 3.30 0.16 9.6</td>
<td>313.1 0.35 0.38 1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.71 1.37 0.02 0.25 0.15 0.01 7.23 3.64 0.23 10.87</td>
<td>330.7 0.37 0.4 2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.71 1.37 0.02 0.25 0.15 0.01 7.23 3.64 0.23 10.87</td>
<td>330.7 0.37 0.4 2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: (つづき) (Continued)
<table>
<thead>
<tr>
<th>試験木</th>
<th>丸番</th>
<th>太番</th>
<th>直径</th>
<th>代表値</th>
<th>収縮率</th>
<th>Shirinkage</th>
<th>容積重</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>試験木</td>
<td>丸番</td>
<td>太番</td>
<td>直径</td>
<td>代表値</td>
<td>収縮率</td>
<td>Shirinkage</td>
<td>容積重</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>Sample</td>
<td>Log No.</td>
<td>Log diameter</td>
<td>(cm)</td>
<td>figures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b-3</td>
<td>29-32</td>
<td>Max. 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b-4</td>
<td>33</td>
<td>Max. 18</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b-5</td>
<td>34</td>
<td>Max. 17</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b-6</td>
<td>35</td>
<td>Max. 18</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>試験木</td>
<td>丸太番</td>
<td>直径</td>
<td>代表値</td>
<td>収縮率</td>
<td>Shirinkage</td>
<td>容積重</td>
<td>T/R</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Sample tree</td>
<td>Log No.</td>
<td>Log diameter (cm)</td>
<td>Representative figures</td>
<td>a_1</td>
<td>a_2</td>
<td>a_3</td>
<td>Density</td>
</tr>
<tr>
<td>b-7</td>
<td>36</td>
<td>16</td>
<td>n</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>(1)</td>
<td>Max.</td>
<td>3.16</td>
<td>1.46</td>
<td>0.06</td>
<td>0.24</td>
<td>0.17</td>
<td>0.02</td>
</tr>
<tr>
<td>(2)</td>
<td>Min.</td>
<td>2.57</td>
<td>1.10</td>
<td>0</td>
<td>0.21</td>
<td>0.12</td>
<td>0.01</td>
</tr>
<tr>
<td>Mean</td>
<td>1.28</td>
<td>2.95</td>
<td>0.03</td>
<td>0.22</td>
<td>0.14</td>
<td>0.02</td>
<td>6.2</td>
</tr>
<tr>
<td>S.D.</td>
<td>0.25</td>
<td>0.25</td>
<td>0.31</td>
<td>0.01</td>
<td>0.01</td>
<td>0.42</td>
<td>0.28</td>
</tr>
<tr>
<td>b-8</td>
<td>37</td>
<td>14</td>
<td>n</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>(1)</td>
<td>Max.</td>
<td>3.40</td>
<td>2.11</td>
<td>0.10</td>
<td>0.26</td>
<td>0.19</td>
<td>0.02</td>
</tr>
<tr>
<td>(2)</td>
<td>Min.</td>
<td>2.30</td>
<td>1.24</td>
<td>0.03</td>
<td>0.20</td>
<td>0.16</td>
<td>0.02</td>
</tr>
<tr>
<td>Mean</td>
<td>2.80</td>
<td>1.60</td>
<td>0.05</td>
<td>0.22</td>
<td>0.17</td>
<td>0.02</td>
<td>6.05</td>
</tr>
<tr>
<td>S.D.</td>
<td>0.39</td>
<td>0.28</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.63</td>
<td>0.36</td>
</tr>
<tr>
<td>b-9</td>
<td>38</td>
<td>16</td>
<td>n</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>(1)</td>
<td>Max.</td>
<td>3.24</td>
<td>1.18</td>
<td>0.09</td>
<td>0.28</td>
<td>0.17</td>
<td>0.03</td>
</tr>
<tr>
<td>(2)</td>
<td>Min.</td>
<td>2.53</td>
<td>0.88</td>
<td>0.01</td>
<td>0.25</td>
<td>0.15</td>
<td>0.02</td>
</tr>
<tr>
<td>Mean</td>
<td>2.95</td>
<td>1.00</td>
<td>0.04</td>
<td>0.26</td>
<td>0.16</td>
<td>0.02</td>
<td>6.75</td>
</tr>
<tr>
<td>S.D.</td>
<td>0.25</td>
<td>0.10</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
<td>0.31</td>
<td>0.27</td>
</tr>
<tr>
<td>小計 Sub-Total</td>
<td>最大18</td>
<td>84</td>
<td>84</td>
<td>84</td>
<td>84</td>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td>最小10</td>
<td>Max.</td>
<td>6.14</td>
<td>4.22</td>
<td>0.13</td>
<td>0.32</td>
<td>0.33</td>
<td>0.03</td>
</tr>
<tr>
<td>Min.</td>
<td>1.88</td>
<td>0.66</td>
<td>0</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>4.94</td>
</tr>
<tr>
<td>Mean</td>
<td>2.89</td>
<td>1.32</td>
<td>0.04</td>
<td>0.23</td>
<td>0.16</td>
<td>0.02</td>
<td>6.29</td>
</tr>
<tr>
<td>S.D.</td>
<td>0.66</td>
<td>0.45</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
<td>0.70</td>
<td>0.57</td>
</tr>
</tbody>
</table>
Table 5. (つづき) (Continued)

<table>
<thead>
<tr>
<th>試験木 Sample tree</th>
<th>丸番号 Log No.</th>
<th>直径 Log diameter (cm)</th>
<th>代表値 Representative figures</th>
<th>収縮率 Shirinkage</th>
<th>容積重 Density</th>
<th>T/R 率</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(a_1)</td>
<td>(a_2)</td>
<td>(a_3)</td>
<td>(R) (kg/m³)</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>16 16 16 16 16 16 16 16</td>
<td></td>
</tr>
<tr>
<td>最大 17</td>
<td>Max.</td>
<td>3.28 1.80 0.11 0.27 0.17 0.03</td>
<td>7.17 3.86 0.45 11.04</td>
<td>365.5 0.41 0.44</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min.</td>
<td>2.31 0.62 0.03 0.19 0.01 0.01</td>
<td>5.38 2.80 0.21 8.77</td>
<td>280.9 0.31 0.34</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>2.94 1.26 0.06 0.22 0.14 0.02</td>
<td>6.14 3.35 0.31 9.55</td>
<td>329.3 0.36 0.40</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>平均 13</td>
<td>S.D.</td>
<td>0.34 0.26 0.02 0.02 0.02</td>
<td>0.54 0.34 0.07 0.67</td>
<td>23.5 0.03 0.03</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(t) 方向 (％)</td>
<td>(r) 方向 (％)</td>
<td>(l) 方向 (％)</td>
<td>(r) 方向 (％)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(v)</td>
<td>(w)</td>
<td>(y)</td>
<td>(v)</td>
</tr>
<tr>
<td>最大 17</td>
<td>Max.</td>
<td>3.28 1.80 0.11 0.27 0.17 0.03</td>
<td>7.17 3.86 0.45 11.04</td>
<td>365.5 0.41 0.44</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min.</td>
<td>2.31 0.62 0.03 0.19 0.01 0.01</td>
<td>5.38 2.80 0.21 8.77</td>
<td>280.9 0.31 0.34</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>2.94 1.26 0.06 0.22 0.14 0.02</td>
<td>6.14 3.35 0.31 9.55</td>
<td>329.3 0.36 0.40</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>平均 13</td>
<td>S.D.</td>
<td>0.34 0.26 0.02 0.02 0.02</td>
<td>0.54 0.34 0.07 0.67</td>
<td>23.5 0.03 0.03</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(t) 方向 (％)</td>
<td>(r) 方向 (％)</td>
<td>(l) 方向 (％)</td>
<td>(r) 方向 (％)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(v)</td>
<td>(w)</td>
<td>(y)</td>
<td>(v)</td>
</tr>
<tr>
<td>最大 17</td>
<td>Max.</td>
<td>3.28 1.80 0.11 0.27 0.17 0.03</td>
<td>7.17 3.86 0.45 11.04</td>
<td>365.5 0.41 0.44</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min.</td>
<td>2.31 0.62 0.03 0.19 0.01 0.01</td>
<td>5.38 2.80 0.21 8.77</td>
<td>280.9 0.31 0.34</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>2.94 1.26 0.06 0.22 0.14 0.02</td>
<td>6.14 3.35 0.31 9.55</td>
<td>329.3 0.36 0.40</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>平均 13</td>
<td>S.D.</td>
<td>0.34 0.26 0.02 0.02 0.02</td>
<td>0.54 0.34 0.07 0.67</td>
<td>23.5 0.03 0.03</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>試験木 Sample tree</td>
<td>丸太 Log No. (本)</td>
<td>直径 Log diameter (cm)</td>
<td>代表値 Representative figures</td>
<td>収縮率 Shrinkage</td>
<td>容積重 Density (kg/m³)</td>
<td>T/R (％)</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>t 方向 (％)</td>
<td>r 方向 (％)</td>
<td>l 方向 (％)</td>
<td>t 方向 (％)</td>
</tr>
<tr>
<td>合計 Total (44)</td>
<td></td>
<td></td>
<td>n 208 208 208 208 208 208 208 208 208 208 208 208 208 208 208</td>
<td>510.6 0.57 0.61 2.6</td>
<td>610.6 0.55 14.17</td>
<td>376.9 0.38 0.41 1.8</td>
</tr>
<tr>
<td>最小 8</td>
<td></td>
<td></td>
<td>Max. 6.14 4.22 0.53 0.32 0.33 0.10 8.96 5.80 0.55 14.17</td>
<td>610.6 0.57 0.61 2.6</td>
<td>610.6 0.55 14.17</td>
<td>376.9 0.38 0.41 1.8</td>
</tr>
<tr>
<td>平均 14</td>
<td></td>
<td></td>
<td>Min. 1.77 0.71 0.0 0.02 0.09 0.01 4.78 2.02 0.12 7.21</td>
<td>268.5 0.29 0.32 1.0</td>
<td>268.5 0.29 0.32 1.0</td>
<td>268.5 0.29 0.32 1.0</td>
</tr>
<tr>
<td>d-1 (1) (11年生)</td>
<td></td>
<td></td>
<td>Mean 2.69 1.25 0.04 0.23 0.16 0.02 6.30 3.55 0.30 9.92</td>
<td>337.9 0.38 0.41 1.8</td>
<td>337.9 0.38 0.41 1.8</td>
<td>337.9 0.38 0.41 1.8</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>S.D. 0.60 0.37 0.06 0.03 0.03 — 0.74 0.96 0.14 1.14</td>
<td>36.6 0.04 0.04 0.3</td>
<td>36.6 0.04 0.04 0.3</td>
<td>36.6 0.04 0.04 0.3</td>
</tr>
</tbody>
</table>

Note) α₁ : 生材から気乾 (含水率 15% 時) までの収縮率 (%) Shrinkage percent from green to air dry (15% moisture content) (%).
α₂ : 含水率 1% あたりの平均収縮率 (%) Shrinkage percent per unit moisture content (%).
α₃ : 生材から全乾までの全収縮率 (%) Shrinkage percent from green to oven dry (%).
t: 接線方向 Tangential direction. r: 半径方向 Radial direction. l: 軸方向 Longitudinal direction. v: 容積 Volume (at oven dry).
R: 容積密度数 Bulk density (kg/m³). r₀: 全乾容積重 Density at oven dry (g/cm³).
r₁₁: 含水率 15% 時に換算した容積重 Density at air dry (at 15% moisture content) (g/cm³).
Table 6. 容積重および収縮率総括表（ケラバット産）

Mean values for density and shrinkage at different levels within the sample tree from Karavat.

<table>
<thead>
<tr>
<th>原木番号</th>
<th>直径</th>
<th>代表值</th>
<th>収縮率</th>
<th>Density</th>
<th>T/R率</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log No.</td>
<td>(cm)</td>
<td></td>
<td>a_t</td>
<td>a_r</td>
<td>a_l</td>
</tr>
<tr>
<td>E 1</td>
<td>53</td>
<td>n</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>(0.3 m)</td>
<td></td>
<td>Max</td>
<td>4.14</td>
<td>1.80</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>2.70</td>
<td>0.57</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>3.21</td>
<td>1.16</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S.D.</td>
<td>0.44</td>
<td>0.41</td>
<td>0.02</td>
</tr>
<tr>
<td>E 1</td>
<td>53</td>
<td>n</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>(1.2 m)</td>
<td></td>
<td>Max</td>
<td>4.24</td>
<td>1.88</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>2.92</td>
<td>0.60</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>3.62</td>
<td>1.42</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S.D.</td>
<td>0.32</td>
<td>0.30</td>
<td>0.03</td>
</tr>
<tr>
<td>E 1</td>
<td>47</td>
<td>n</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>(3.0 m)</td>
<td></td>
<td>Max</td>
<td>3.46</td>
<td>1.96</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>1.26</td>
<td>1.08</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>2.67</td>
<td>1.30</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S.D.</td>
<td>0.72</td>
<td>0.71</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Table 6. (つづき) (Continued)

<table>
<thead>
<tr>
<th>原木番号</th>
<th>直径</th>
<th>代表値</th>
<th>収縮率</th>
<th>Shirinkage</th>
<th>容積重</th>
<th>T/R率</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log No.</td>
<td>(cm)</td>
<td>(Height of logs)</td>
<td>Representative figures</td>
<td>a₁</td>
<td>a₂</td>
<td>a₃</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max.</td>
<td>3.47</td>
<td>1.87</td>
<td>0.11</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>2.24</td>
<td>0.81</td>
<td>0.01</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>2.82</td>
<td>1.18</td>
<td>0.05</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S.D.</td>
<td>0.37</td>
<td>0.34</td>
<td>0.07</td>
<td>0.03</td>
</tr>
<tr>
<td>E 3 (9.0 m)</td>
<td>41</td>
<td>n</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max.</td>
<td>7.17</td>
<td>4.81</td>
<td>0.14</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>1.94</td>
<td>0.89</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>3.21</td>
<td>1.63</td>
<td>0.09</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S.D.</td>
<td>1.38</td>
<td>1.09</td>
<td>0.03</td>
<td>0.72</td>
</tr>
<tr>
<td>E 4 (12 m)</td>
<td>41</td>
<td>n</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max.</td>
<td>3.08</td>
<td>1.83</td>
<td>0.24</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>2.30</td>
<td>0.79</td>
<td>0.03</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>2.57</td>
<td>1.21</td>
<td>0.10</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S.D.</td>
<td>2.29</td>
<td>0.31</td>
<td>0.06</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Table 6. (つづき) (Continued)

<table>
<thead>
<tr>
<th>原木番号</th>
<th>直 径</th>
<th>代表値</th>
<th>収 縮 率</th>
<th>Shirinkage</th>
<th>容 積 積 重</th>
<th>T/R 率</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log No.</td>
<td>(cm)</td>
<td>figures</td>
<td>a_1</td>
<td>a_2</td>
<td>a_3</td>
<td>R</td>
</tr>
<tr>
<td>E</td>
<td>39</td>
<td>n</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Min.</td>
<td>1.89</td>
<td>0.01</td>
<td>0.22</td>
<td>0.14</td>
<td>0.01</td>
<td>5.40</td>
</tr>
<tr>
<td>Mean</td>
<td>2.36</td>
<td>0.26</td>
<td>0.17</td>
<td>0.02</td>
<td>0.30</td>
<td>6.22</td>
</tr>
<tr>
<td>S.D.</td>
<td>0.33</td>
<td>0.03</td>
<td>0.03</td>
<td>--</td>
<td>0.06</td>
<td>0.98</td>
</tr>
<tr>
<td>E</td>
<td>37</td>
<td>n</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Max.</td>
<td>3.25</td>
<td>0.08</td>
<td>0.61</td>
<td>0.42</td>
<td>0.02</td>
<td>7.57</td>
</tr>
<tr>
<td>Min.</td>
<td>1.96</td>
<td>0.22</td>
<td>0.13</td>
<td>0.01</td>
<td>0.18</td>
<td>5.19</td>
</tr>
<tr>
<td>Mean</td>
<td>1.93</td>
<td>0.30</td>
<td>0.19</td>
<td>0.02</td>
<td>0.31</td>
<td>6.22</td>
</tr>
<tr>
<td>S.D.</td>
<td>1.17</td>
<td>0.11</td>
<td>0.08</td>
<td>--</td>
<td>0.07</td>
<td>0.77</td>
</tr>
<tr>
<td>合 計</td>
<td></td>
<td></td>
<td>88</td>
<td>88</td>
<td>74</td>
<td>88</td>
</tr>
<tr>
<td>Max.</td>
<td>7.17</td>
<td>0.36</td>
<td>0.61</td>
<td>0.42</td>
<td>0.03</td>
<td>8.26</td>
</tr>
<tr>
<td>Min.</td>
<td>1.26</td>
<td>0.20</td>
<td>0.20</td>
<td>0.02</td>
<td>0.00</td>
<td>5.03</td>
</tr>
<tr>
<td>Mean</td>
<td>2.93</td>
<td>0.26</td>
<td>0.16</td>
<td>0.02</td>
<td>0.31</td>
<td>6.65</td>
</tr>
<tr>
<td>S.D.</td>
<td>1.21</td>
<td>0.07</td>
<td>0.07</td>
<td>--</td>
<td>0.07</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Note) a_1: 生材から気乾（含水率 15% 時）までの収縮率（%）Shrinkage percent from green to air dry (15% moisture content) (%).
a_2: 含水率 1% あたりの平均収縮率（%）Shrinkage percent per unit moisture content (%).
a_3: 生材から全乾までの全収縮率（%）Shrinkage percent from green to oven dry (%).
R: 容積密度数 Bulk density (kg/m3). r_0: 全乾容積重 Density at oven dry (g/cm3).
r_{15}: 含水率 15% 時に換算した容積重 Density at air dry (at 15% moisture content) (g/cm3).
モサ産材の収縮率は、接線方向が6.4％（5.7～7.3％）、半径方向が3.7％（3.1～4.3％）、軸方向が0.22％（0.16～0.26％）、T/Rは1.8（1.6～1.9）である。また、ケラパット産の樹幹全体（丸太数6、測定箇所8）の収縮率の平均値は、接線方向6.7％（5.0～8.3％）、半径方向3.6％（2.7～5.4％）、軸方向0.38％（0.12～0.72％）、T/R1.9％（1.2～2.6％）である。

以前実施した、東ニューブリテン産の3個体のカメレ天然木の容積密度数の値としては、各々466 kg/m³（362～580 kg/m³）、378 kg/m³（318～470 kg/m³）、425 kg/m³（319～546 kg/m³）が得られている。また、その他の既往の値としては10）、成熟材部に対して560 kg/m³、若齢材（樹齢不明）に対して470 kg/m³が得られている。また、同じく3個体の収縮率は、接線方向9.3％（7.5～10.5％）、8.4％（8.0～9.0％）、8.4％（7.5～8.8％）、半径方向6.0％（4.1～7.3％）、4.4％（3.7～5.3％）、4.9％（4.1～5.9％）、軸方向0.43％（0.35～0.53％）、0.29％（0.25～0.34％）、0.25％（0.20～0.33％）である。

これら既報11）の容積密度数の値と、今回の値とを比較すると、供試した44本の若齢材（4、5、6年生）の中でも、容積密度数の平均値が最も大きい丸太（丸太No.23、5年生）でさえも、その値は444 kg/m³（317～511 kg/m³）で、従来から得られている若齢材（樹齢不明）の値よりも低い（今回の平均値は338 kg/m³）。最も低い丸太では（丸太No.16、6年生）の295 kg/m³（286～316 kg/m³）で、個体差が大きい。容積密度数は、4～6年生、11年生、さらに18年生（推定樹齢）へと、樹齢が高くなるにつれて大きくなるが、18年生の丸太でも、その平均値は、既報の若齢材の値10）に比べると、約100 kg/m³低い値を示した。

（2）容積密度数および収縮率の樹幹内水平方向の分布

ホスキンス産材21個体、44本の丸太について、心からの距離と容積密度数、収縮率（接線方向、半径方向）の樹幹内水平方向変動を求め、Fig.11、Fig.12に示す。モサ産（11年生）について、同様の関係を求め、Fig.13に、さらに、ケラパット産については、Fig.14、Fig.15に示す。その結果、樹齢が若いホスキンス産材については、木心から外周に向かって、容積密度数、収縮率の変動は、いずれも明確
の傾向を認めることができなかった。これに対して、ホスキンス産材よりも樹齢が高い、モサ産（11年生）とケラパット産（18年生）の丸太については、地上高に関係なく、どの丸太も側付近の部分で容積密度数、接線、半径方向の収縮率の値が小さいが、外周に向かうにつれて、それらの値が次第に大きくなる傾向が認められた。この結果は、既報10の天然生林からのカメレ（樹齢は不明であるが、丸太の直径70～80cmのもの）で認められた結果と同様の傾向であった。しかし、天然木では、幹の外周付近で、品質がほぼ安定しているのに対して、今回の供試材のなかで樹齢が最も高い、ケラパット産のカメレの外周部分さえも、これらの指標の値は、その後も増加する傾向にあり、一般に成熟材部で認められるよ

Fig. 12. 樹幹水平方向における収縮率の変動（ホスキンス産）
Variation of shrinkage from pith (sample from Hoskins).

Fig. 13. 樹幹水平方向における収縮率および容積密度数の変動（モサ産）
Variation of shrinkage and basic density from pith (sample from Mosa).
うに、材質が安定するまでにはいたっていないことがわかる。ただし、地上高 0.3 m, 1.2 m の部分では、品質がほぼ安定し、成熟材と類似の品質を示しはじめていることから、造林木の場合、20年を過ぎる頃から、ほぼ成熟材になるといえるようである。

（3）容積密度数の樹幹内輪方向の分布

樹幹の地上高にともなう容積密度数の変動を、供試円板ごとに求め、容積密度数の平均値と樹高との関係を Fig. 16 に示す。この図は、4年生1個体、5年生と6年生とは、3個体ずつについて求めた結果である。この図から、どの個体をみても、地上高が高くなるにともなって容積密度数の値が、多少大きくなる傾向が認められる程度で、地上高による変化はそれほど大きくない。同じ地上高における、各個体の容
積密度数の値を比較すると、個体による変動が大きい。例えば、地上3mの位置で比較すると、容積密度数が低い個体では300 kg/m³であるのに対し、それが大きい個体では390 kg/m³に達する。また、樹齢による差異をみると、6年生のものの方が4、5年生のものよりも大きい傾向にはあるが、5年生の中にも、6年生とほぼ同じ値を示す個体があること、逆に4年生のものよりも低い個体があることなどを考え合わせると、樹齢や地上高による差よりも、個体による差の方が大きいことがわかる。 太田貞明

IV 吸水性および吸水量

1. 吸水性

（1）吸水量の半径方向の変動

前報12）と同様、試験に供された個々の原木の樹幹断面内の吸水性の分布をみるため半径方向に沿った吸水量の変動を検討した。試験木は、原木番号5、10、17、20、45の5本であった（Table 7）。なお、吸水量の場合、横断面からの吸水が最も大きく、他の2面のそれらも横断面吸水量の大小に比例することが多いので、以後、横断面の吸水挙動を以て試験片の吸水性を代表させた。

A) 試験方法

試験方法は既報13）の内容に準拠したが、横断試験片の軸方向の長さを15mmとし、隣接した2枚をそれぞれの各試験木からとり、1枚を吸水試験、1枚を吸水前の含水率測定用試験片とした。

B) 試験結果と考察

Fig. 17 に試験丸太5本の樹幹横断面の半径方向に沿った3時間後の吸水量変動を示す。左縦軸は吸水量を、右縦軸は乾材容積重を示し、図中央部の垂直の線は髓の位置を示す。横軸は樹幹横断面の直径を1
Fig. 17. 木口面直径に沿った吸水量の変動
パターン
（ΔW：吸水量，r₀：全乾容積重）
Patterns of water absorption amount in cross section of five sample logs
（ΔW：Water absorption amount，r₀：density at air dry）

とした相対長さを示す。
本試験に供されたカメレレ材は、淡色の心材部をもつが、その中にも偽心状の着色部位が存在し、また、
青変菌の痕跡も樹幹横断面の中央部分に認められた。このような材の吸水性は心・辺材が不明瞭な材とほ
ぼ同様な挙動を示すことが多いので、吸水量の半径方向の変動からカメレレ材の心・辺材の境界を確定す

パプア・ニューギニア産カメレレ（熱帯産造林木研究班）

Table 7. 吸水量 Water absorption

<table>
<thead>
<tr>
<th>丸太番号</th>
<th>気乾容積重（％）</th>
<th>含水率（％）</th>
<th>吸水量（mg/ml-day）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Log No.</td>
<td>Density in air dry</td>
<td>Moisture content</td>
</tr>
<tr>
<td></td>
<td>No.</td>
<td>(%)</td>
<td>(No. 18)</td>
</tr>
<tr>
<td>5</td>
<td>(18) *1</td>
<td>13.7</td>
<td>(7)</td>
</tr>
<tr>
<td></td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.36〜0.41*2</td>
<td>13.4〜14.1</td>
<td>(7)</td>
</tr>
<tr>
<td>10</td>
<td>(15)</td>
<td>14.1</td>
<td>(6)</td>
</tr>
<tr>
<td></td>
<td>0.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.35〜0.40</td>
<td>13.7〜14.3</td>
<td>(8)</td>
</tr>
<tr>
<td>17</td>
<td>(20)</td>
<td>14.1</td>
<td>(8)</td>
</tr>
<tr>
<td></td>
<td>0.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.40〜0.61</td>
<td>13.7〜14.5</td>
<td>(7)</td>
</tr>
<tr>
<td>20</td>
<td>(17)</td>
<td>13.9</td>
<td>(7)</td>
</tr>
<tr>
<td></td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.34〜0.48</td>
<td>13.3〜14.5</td>
<td>(6)</td>
</tr>
<tr>
<td></td>
<td>(15)</td>
<td>13.8</td>
<td>(7)</td>
</tr>
<tr>
<td></td>
<td>0.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.40〜0.50</td>
<td>13.6〜14.3</td>
<td>(6)</td>
</tr>
<tr>
<td>45</td>
<td>(15)</td>
<td>13.9</td>
<td>(7)</td>
</tr>
<tr>
<td></td>
<td>0.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.34〜0.50</td>
<td>13.3〜14.5</td>
<td>(6)</td>
</tr>
<tr>
<td></td>
<td>(15)</td>
<td>13.8</td>
<td>(7)</td>
</tr>
<tr>
<td>平均Mean</td>
<td>(85)</td>
<td>13.9</td>
<td>(34)</td>
</tr>
<tr>
<td></td>
<td>0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.34〜0.61</td>
<td>13.3〜14.5</td>
<td>(36)</td>
</tr>
</tbody>
</table>

Note) *1試片数 Number of specimens.
*2最大, 最小 Maximum and Minimum

ことはできなかった。しかし、目視的には最外層の着色帯が心・辺材の境界と見なされた。なお、密色の材は傾向として吸水量の多いクラスに属するが、比較的健全な心・辺材をもつカメレレ材の吸水量は小さい部類に属していると判断される。

そのほか、試験丸太5本の範囲内での特徴は、No. 17, 45 に見られるテンションウッドのようにみえる部分の存在である。容積重が辺材に向かって大きくなっているが吸水性とは有意の関係を示していない。しかし、やはり辺材の吸水性が心材より若干高いことを No. 5, 10, 20 は示している。

2. 吸水量
(1) 試験方法吸水量の試験は、JISZ 2104-1957 に準拠して実施した。試験片は、辺材部分が狭かったので心材部分から採取された。

(2) 試験結果と考察
Table 7 に示すように、試験材番号5の吸水量が3面ともほかより大きい傾向を示し、5試験丸太の平均値も横断、接線断面では既報のカメレレ材のそれらより若干大きかった。しかし、これらの平均値は日本産主要樹種の5段階評価の1, 2 に相応し、吸水量としては小さい部類に属していた。葉石猛夫
Ⅴ 強度的性質

カメレレについて、基準強度値を求めるとともに丸太内での強度的性質の分布を知るため、無欠点小試験片による強度試験を行った。

1. 試験材と試験方法

（1）試験材

試験材としては、1981年12月に採取したグループと、1983年6月に採取したグループとに分けられるが、いずれも伐採時の樹齢が明らかなので、試験材一覧をTable 1に示した。同表のなかでT-1, M-1, M-15, B-16, B-25の5本の丸太は、後者に属するもので、試験木の樹齢は7年生から15年生であった。一方、前者に属する1から45までの番号を付した丸太のうち45のみが11年生であった以外は、4年生から6年生であった。試験に用いた丸太は、すべて長さ4mであった。強度試験にはいずれも一端を用い、元口側より60cmの長さの部分で試験片を採取した。

1981年に入手したグループについては、検査を通る二方柾目板より、JISZ 2113に規定されている静的曲げ試験片を木取った。このとき一辺の長さを25mmとした。また、これらの静的曲げ試験片と対をなすように、JISZ 2116に規定されている衝撃曲げ試験片を木取った。

1983年に入手したグループについては、上述のグループと同様の考え方で、樹皮から髄を通り、樹皮にいたる二方柾の静的曲げ試験片を中心にして、縦引張試験片、衝撃曲げ試験片が、同一生長輪と思われる位置で一組を構成するように留意して木取った。

以上述べたすべての試験片は、丸太内での強度の分布を知るためその中心部と樹心との距離を測定した。荒木取りされた試験片は自然乾燥により十分気乾状態に達した後、所定の寸法に仕上げられた。

（2）試験方法

試験の種類および方法は、ほぼJISに準拠したので詳細は省略する。

無欠点小試験片の曲げ試験方法は、中央集中荷重方式で、支点間距離は、はりせいの14倍の35cmであった。荷重は、柾目面に負荷した。静的曲げ試験終了後、その非破壊部分より総圧縮試験体、せん断試験体を木取りそれぞれの試験を行った。かつて試験のうち、H1は、総圧縮試験片の両木口の測定結果を平均して、Hr、Htは部分圧縮試験用として準備した試験片の板目面、柾目面に於いて3個の測定結果を平均して求めた。

衝撃曲げ試験は、柾目面中央を10kgf・mのエネルギーをもつ衝撃試験機で打撃して行った。

総圧縮試験片は、曲率を付与する前に容積重を測定した。

これらの試験は、温度20℃±1℃、相対湿度75%±5%に調整された恒温恒湿室で行われた。含水率の測定は、総圧縮試験が終了した後、全乾法で行った。

2. 試験結果と考察

（1）基準強度値

1983年に採取した試験片について行った各種強度試験の結果をTable 8に示した。すなわち、同表には曲げ試験片で測定した容積重、含水率、静的曲げ試験、総圧縮試験、せん断試験、かつて試験、衝撃曲げ試験の各項目ごとに試験体数、平均値、標準偏差、変動係数を掲げた。総圧縮試験、衝撃曲げ試験の容積重は、それぞれ当該試験片で測定した値である。
パプア・ニューギニア産カメレ（熱帯産造林木研究班）

6年生のB-25の容積重の平均値が0.40g/cm³であったのに対し、7から15年生の供試木のなかで最も成長の良かったM-1が0.43g/cm³とやや低くなっているほかは0.46〜0.47g/cm³と、ほぼ同一の値を示していた。つぎに、これら各種の強度値間の相互関係をTable 9に示した。最大強さを容積重で除した形質係数は、静的曲げ、縦圧縮、せん断でそれぞれ13.6km, 7.6km, 1.6km、であった。最大強さをヤング係数で除した値は、静的曲げ、縦圧縮でそれぞれ0.76%, 0.31%, であった。最大強さに対する比例限度の比は、静的曲げで0.62, 縦圧縮で0.64であった。

各丸太ごとの縦圧縮強さと縦引張強さの平均値を、次式

\[\frac{3r - 1}{r + 1} \sigma_c = \sigma_{br} \quad \text{ただし, } r = \frac{\sigma_r}{\sigma_c} \]

に代入して、静的曲げ強さの計算値（\(\sigma_{br} \)）を求め実測値と比較すると、全試験片の総平均で1.01であった。

（2）丸太内での曲げ強度性能の分布

丸太内での曲げ強度性能の分布を知るため1981年に入手したグループの試験片で得られた静的曲げ強度試験と衝撃曲げ試験の結果を1983年に入手した試験片による結果とともに整理して、Table 10に示した。また、樹心からの距離（Dfp）と、曲げ破壊係数（\(\sigma_b \)）、曲げの形質係数（\(\sigma_b/R_u \)）、曲げヤング係数（\(E_b \））、衝撃曲げ吸収エネルギー（a）との関係をそれぞれ、Fig. 18, 19, 20, 21に示した。

\(\sigma_b \)と樹心からの距離（Fig. 18）、\(\sigma_b/R_u \)と樹心からの距離（Fig. 19）、\(E_b \)と樹心からの距離（Fig. 20）より、樹心近傍では、やや低い値が認められるが、樹心からの距離が大きくなるにつれて、\(\sigma_b \), \(\sigma_b/R_u \), \(E_b \)が明らかに大きな値をとるとは認め難い。このことは、フィージ産カリビアマツで得られた知

Fig. 18. 曲げ破壊係数（\(\sigma_b \)）と樹心からの距離との関係
Relation between modulus of rupture and distance from pith.
見と異なる10)。
一方, a と樹心からの距離（Fig. 21）との間では, 後者が大きくなるにつれ, a の値が最初は急増し次第に一定値となる傾向が認められた。
既報のカメレの曲げ試験結果と比較する目的で, 樹心から半径 5 cm 以内の部分を core wood, そ

Table 8. 強度試験
Results of several

<table>
<thead>
<tr>
<th>丸太番号</th>
<th>Log No.</th>
<th>樹齢</th>
<th>Age of sample tree (Years)</th>
<th>容積重</th>
<th>Density at tent</th>
<th>含水率</th>
<th>Moisture content</th>
<th>静的曲げ</th>
<th>Static bending</th>
<th>縦圧縮</th>
<th>Compression parallel to grain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R_a (g/cf)</td>
<td></td>
<td>u (%)</td>
<td></td>
<td>E_b (103kgf/cm2)</td>
<td>σ_p (kgf/cm2)</td>
<td>σ_b (kgf/cm2)</td>
<td>E_c (103kgf/cm2)</td>
</tr>
<tr>
<td>B-25</td>
<td>n</td>
<td>6</td>
<td></td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>103.6</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td></td>
<td></td>
<td>0.40</td>
<td>14.9</td>
<td>74.7</td>
<td>378</td>
<td>582</td>
<td>14.6</td>
<td>9.18</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>S.D.</td>
<td></td>
<td></td>
<td>0.017</td>
<td>0.2</td>
<td>7.40</td>
<td>23.6</td>
<td>38.8</td>
<td>14.6</td>
<td>9.18</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>C.V.</td>
<td></td>
<td></td>
<td>4.2</td>
<td>1.4</td>
<td>9.9</td>
<td>6.24</td>
<td>6.15</td>
<td>14.1</td>
<td>4.1</td>
<td>3.3</td>
</tr>
<tr>
<td>B-16</td>
<td>n</td>
<td>7</td>
<td></td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>86.0</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td></td>
<td></td>
<td>0.46</td>
<td>15.5</td>
<td>69.4</td>
<td>326</td>
<td>532</td>
<td>12.4</td>
<td>37.4</td>
<td>28.9</td>
</tr>
<tr>
<td></td>
<td>S.D.</td>
<td></td>
<td></td>
<td>0.031</td>
<td>0.36</td>
<td>9.44</td>
<td>97.0</td>
<td>173</td>
<td>14.4</td>
<td>19.7</td>
<td>9.7</td>
</tr>
<tr>
<td></td>
<td>C.V.</td>
<td></td>
<td></td>
<td>6.8</td>
<td>2.3</td>
<td>13.6</td>
<td>29.7</td>
<td>32.5</td>
<td>14.4</td>
<td>19.7</td>
<td>9.7</td>
</tr>
<tr>
<td>M-15</td>
<td>n</td>
<td>11</td>
<td></td>
<td>12</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td></td>
<td></td>
<td>0.46</td>
<td>14.9</td>
<td>87.3</td>
<td>396</td>
<td>637</td>
<td>120.9</td>
<td>227</td>
<td>359</td>
</tr>
<tr>
<td></td>
<td>S.D.</td>
<td></td>
<td></td>
<td>0.032</td>
<td>0.23</td>
<td>11.8</td>
<td>81.5</td>
<td>109</td>
<td>16.0</td>
<td>25.8</td>
<td>24.4</td>
</tr>
<tr>
<td></td>
<td>C.V.</td>
<td></td>
<td></td>
<td>7.1</td>
<td>1.6</td>
<td>13.5</td>
<td>20.7</td>
<td>17.1</td>
<td>13.3</td>
<td>11.4</td>
<td>6.8</td>
</tr>
<tr>
<td>M-1</td>
<td>n</td>
<td>12</td>
<td></td>
<td>15</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td></td>
<td></td>
<td>0.43</td>
<td>15</td>
<td>73.2</td>
<td>362</td>
<td>575</td>
<td>96.2</td>
<td>201</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>S.D.</td>
<td></td>
<td></td>
<td>0.025</td>
<td>0.22</td>
<td>8.6</td>
<td>68.8</td>
<td>84.4</td>
<td>6.96</td>
<td>16.2</td>
<td>19.9</td>
</tr>
<tr>
<td></td>
<td>C.V.</td>
<td></td>
<td></td>
<td>5.8</td>
<td>1.5</td>
<td>11.8</td>
<td>19.0</td>
<td>14.7</td>
<td>7.3</td>
<td>8.0</td>
<td>6.4</td>
</tr>
<tr>
<td>T-1</td>
<td>n</td>
<td>15</td>
<td></td>
<td>15</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td></td>
<td></td>
<td>0.47</td>
<td>15.4</td>
<td>86.4</td>
<td>406</td>
<td>651</td>
<td>115.9</td>
<td>207</td>
<td>343</td>
</tr>
<tr>
<td></td>
<td>S.D.</td>
<td></td>
<td></td>
<td>0.047</td>
<td>0.36</td>
<td>11.8</td>
<td>68.5</td>
<td>59.7</td>
<td>18.0</td>
<td>45.2</td>
<td>33.6</td>
</tr>
<tr>
<td></td>
<td>C.V.</td>
<td></td>
<td></td>
<td>10.0</td>
<td>2.4</td>
<td>13.7</td>
<td>16.9</td>
<td>9.2</td>
<td>15.6</td>
<td>21.8</td>
<td>9.8</td>
</tr>
<tr>
<td>計 All over</td>
<td>n</td>
<td>55</td>
<td></td>
<td>55</td>
<td>50</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td></td>
<td></td>
<td>0.45</td>
<td>15.1</td>
<td>79.7</td>
<td>377</td>
<td>606</td>
<td>106.7</td>
<td>210</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>S.D.</td>
<td></td>
<td></td>
<td>0.040</td>
<td>0.36</td>
<td>12.2</td>
<td>73.7</td>
<td>99.3</td>
<td>18.4</td>
<td>32.0</td>
<td>32.9</td>
</tr>
<tr>
<td></td>
<td>C.V.</td>
<td></td>
<td></td>
<td>8.9</td>
<td>2.3</td>
<td>15.4</td>
<td>19.6</td>
<td>16.4</td>
<td>17.2</td>
<td>15.2</td>
<td>100</td>
</tr>
</tbody>
</table>

Note) n : 試験体数 Number of specimens
Mean : 算術平均値 Mean value
S.D. : 標準偏差 Standard deviation
C.V. : 変動係数 Coefficient of variation (%)
R_a : 容積重 Density at tent
u : 含水率 Moisture content
E_b : 曲げヤング係数 YOUNG's modulus in static bending
σ_p : 比例限界 Stress at proportional limit
σ_b : 曲げ強さ Modulus of rupture in static bending
E_c : 縦圧縮ヤング係数 YOUNG's modulus in compression parallel to grain
の外側を outer wood と区別し、各測定項目の平均値と、outer wood の平均値に対する core wood の平均値の比を、Table 10 に示した。7年生の B-16 で得られた outer wood の値と、既報17）の7年生カメレレの値を比較すると、容積重は後者の方が 0.43 g/cm³ と低いかわらず E_b と α の値でそれぞれ約10％、約20％高い結果を示しており、σ_c、σ_p の値は、両者ともほとんど同一であった。

結 果（気乾状態）
mechanical tests (Air dry condition).

<table>
<thead>
<tr>
<th>縦引張</th>
<th>せん断</th>
<th>かたさ</th>
<th>衝撃曲げ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension parallel to grain</td>
<td>Shear parallel to grain</td>
<td>Hardness</td>
<td>Impact bending</td>
</tr>
<tr>
<td>R_u (g/cm²)</td>
<td>σ_t (kgf/cm²)</td>
<td>τ_R (kgf/cm²)</td>
<td>H_R (kgf/mm²)</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0.38</td>
<td>820</td>
<td>62.1</td>
<td>77.7</td>
</tr>
<tr>
<td>0.012</td>
<td>175</td>
<td>4.00</td>
<td>14.5</td>
</tr>
<tr>
<td>3.1</td>
<td>21.4</td>
<td>6.4</td>
<td>18.7</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0.46</td>
<td>622</td>
<td>72.3</td>
<td>84.0</td>
</tr>
<tr>
<td>0.064</td>
<td>163</td>
<td>13.5</td>
<td>9.63</td>
</tr>
<tr>
<td>11.7</td>
<td>26.2</td>
<td>18.7</td>
<td>11.5</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>0.46</td>
<td>870</td>
<td>70.7</td>
<td>81.9</td>
</tr>
<tr>
<td>0.027</td>
<td>201</td>
<td>6.98</td>
<td>10.3</td>
</tr>
<tr>
<td>5.8</td>
<td>23.1</td>
<td>9.7</td>
<td>12.6</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>0.44</td>
<td>821</td>
<td>69.4</td>
<td>83.7</td>
</tr>
<tr>
<td>0.034</td>
<td>173</td>
<td>6.54</td>
<td>6.33</td>
</tr>
<tr>
<td>7.7</td>
<td>21.1</td>
<td>9.4</td>
<td>7.6</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>0.46</td>
<td>766</td>
<td>77.4</td>
<td>91.8</td>
</tr>
<tr>
<td>0.046</td>
<td>115</td>
<td>9.76</td>
<td>13.4</td>
</tr>
<tr>
<td>10.0</td>
<td>14.6</td>
<td>12.6</td>
<td>14.6</td>
</tr>
<tr>
<td>53</td>
<td>53</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>0.45</td>
<td>796</td>
<td>71.4</td>
<td>86.0</td>
</tr>
<tr>
<td>0.045</td>
<td>175</td>
<td>9.09</td>
<td>11.5</td>
</tr>
<tr>
<td>10.0</td>
<td>22.0</td>
<td>12.7</td>
<td>13.6</td>
</tr>
</tbody>
</table>

σ_c: 縦圧縮強さ Maximum crushing strength in compression parallel to grain
σ_t: 縦引張強さ Maximum strength in tension parallel to grain
τ_R: せん断強さ (板目面) Shearing strength (Radial surface)
τ_T: せん断強さ (柾目面) Shearing strength (Tangential surface)
H_R: 木口面かたき End hardness
H_T: 板目面かたき Side hardness (Tangential surface)
H_T: 柾目面かたき Side hardness (Radial surface)
a: 吸収エネルギー Absorbed energy in impact bending
Table 9. 各強度的性質の
Relation between

<table>
<thead>
<tr>
<th>丸太番号</th>
<th>樹齢 Age of sample tree (Years)</th>
<th>静的曲げ Static bending</th>
<th>総圧縮 Compression parallel to grain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log No.</td>
<td>σ_b/σ_b</td>
<td>σ_b/R_u</td>
<td>σ_b/E_b</td>
</tr>
<tr>
<td>B-25</td>
<td>6</td>
<td>14.5</td>
<td>0.78</td>
</tr>
<tr>
<td>B-16 Mean</td>
<td>7</td>
<td>11.7</td>
<td>0.76</td>
</tr>
<tr>
<td>M-15</td>
<td>11</td>
<td>13.9</td>
<td>0.73</td>
</tr>
<tr>
<td>M-1 Mean</td>
<td>12</td>
<td>13.4</td>
<td>0.78</td>
</tr>
<tr>
<td>T-1 Mean</td>
<td>15</td>
<td>13.9</td>
<td>0.76</td>
</tr>
<tr>
<td>計 Mean</td>
<td>Mean</td>
<td>13.6</td>
<td>0.76</td>
</tr>
<tr>
<td>S. D.</td>
<td>0.62</td>
<td>1.97</td>
<td>0.10</td>
</tr>
<tr>
<td>C. V.</td>
<td>8.50</td>
<td>14.5</td>
<td>13.6</td>
</tr>
</tbody>
</table>

Note）Table 8 参照。See footnote in Table 8.

Fig. 19. 曲げの形質商 (σ_b/R_u) と樹心からの距離との関係
Relation between specific strength in bending (σ_b/R_u) and distance from pith.
相互関係（気乾状態）
mechanical properties (Air-dry condition)

<table>
<thead>
<tr>
<th>セン断</th>
<th>かたさ</th>
<th>衝撃曲げ</th>
<th>相互関係</th>
</tr>
</thead>
<tbody>
<tr>
<td>τR/Ru (kN)</td>
<td>H1/Hr</td>
<td>a/Rh</td>
<td>σc/H1</td>
</tr>
<tr>
<td>r = σl/σc</td>
<td>φ = 3r-1/r+1</td>
<td>φob = σb/σc</td>
<td>φob/φ</td>
</tr>
<tr>
<td>1.57</td>
<td>1.3</td>
<td>0.94</td>
<td>2.8</td>
</tr>
<tr>
<td>1.50</td>
<td>1.2</td>
<td>1.13</td>
<td>1.5</td>
</tr>
<tr>
<td>1.59</td>
<td>1.2</td>
<td>1.02</td>
<td>2.5</td>
</tr>
<tr>
<td>1.61</td>
<td>1.2</td>
<td>0.73</td>
<td>2.4</td>
</tr>
<tr>
<td>1.72</td>
<td>1.2</td>
<td>0.78</td>
<td>2.6</td>
</tr>
<tr>
<td>1.63</td>
<td>1.2</td>
<td>0.87</td>
<td>2.4</td>
</tr>
<tr>
<td>0.19</td>
<td>0.16</td>
<td>0.36</td>
<td>0.7</td>
</tr>
<tr>
<td>11.7</td>
<td>13.1</td>
<td>41.8</td>
<td>29.1</td>
</tr>
</tbody>
</table>

Fig. 20. 曲げヤング係数 (E_b) と樹心からの距離との関係
Relation between modulus of elasticity (E_b) and distance from pith.
<table>
<thead>
<tr>
<th>試験の種類</th>
<th>樹齢 (Years)</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>11</th>
<th>12</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinds of test</td>
<td>Age of sample trees</td>
<td>39~44</td>
<td>21~38</td>
<td>1~20</td>
<td>B~25</td>
<td>B~16</td>
<td>45</td>
<td>M~15</td>
</tr>
<tr>
<td>試験体数</td>
<td>Number of specimens</td>
<td>Outer wood</td>
<td>12</td>
<td>39</td>
<td>39</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Core wood</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>距離</td>
<td>Distance from pith (mm)</td>
<td>Outer wood</td>
<td>63.5</td>
<td>66.8</td>
<td>69.5</td>
<td>78.0</td>
<td>80.0</td>
<td>84.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Core wood</td>
<td>28.5</td>
<td>32.3</td>
<td>27.4</td>
<td>24.0</td>
<td>24.3</td>
<td>27.5</td>
</tr>
<tr>
<td>比率</td>
<td>Ratio</td>
<td>C/O</td>
<td>0.45</td>
<td>0.49</td>
<td>0.39</td>
<td>0.31</td>
<td>0.30</td>
<td>0.32</td>
</tr>
<tr>
<td>密度</td>
<td>Density (g/cm³)</td>
<td>Outer wood</td>
<td>0.39</td>
<td>0.40</td>
<td>0.39</td>
<td>0.40</td>
<td>0.46</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Core wood</td>
<td>0.41</td>
<td>0.40</td>
<td>0.39</td>
<td>0.40</td>
<td>0.45</td>
<td>0.43</td>
</tr>
<tr>
<td>比率</td>
<td>Ratio</td>
<td>C/O</td>
<td>1.05</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.98</td>
<td>0.91</td>
</tr>
<tr>
<td>曲げ破壊数</td>
<td>Modulus of rupture (kgf/cm²)</td>
<td>Outer wood</td>
<td>534</td>
<td>506</td>
<td>529</td>
<td>573</td>
<td>461</td>
<td>617</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Core wood</td>
<td>583</td>
<td>511</td>
<td>471</td>
<td>595</td>
<td>461</td>
<td>617</td>
</tr>
<tr>
<td>比率</td>
<td>Ratio</td>
<td>C/O</td>
<td>1.09</td>
<td>1.00</td>
<td>0.89</td>
<td>1.04</td>
<td>0.74</td>
<td>0.92</td>
</tr>
<tr>
<td>曲げ比例限界</td>
<td>Stress at proportional limit (kgf/cm²)</td>
<td>Outer wood</td>
<td>312</td>
<td>307</td>
<td>319</td>
<td>382</td>
<td>281</td>
<td>369</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Core wood</td>
<td>373</td>
<td>308</td>
<td>290</td>
<td>372</td>
<td>281</td>
<td>369</td>
</tr>
<tr>
<td>比率</td>
<td>Ratio</td>
<td>C/O</td>
<td>1.20</td>
<td>1.00</td>
<td>0.88</td>
<td>0.97</td>
<td>0.76</td>
<td>0.84</td>
</tr>
<tr>
<td>曲げヤング係数</td>
<td>Modulus of elasticity (kgf/cm²)</td>
<td>Outer wood</td>
<td>66.0</td>
<td>67.6</td>
<td>70.9</td>
<td>78.0</td>
<td>70.8</td>
<td>90.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Core wood</td>
<td>72.3</td>
<td>64.4</td>
<td>62.0</td>
<td>70.3</td>
<td>67.9</td>
<td>81.2</td>
</tr>
<tr>
<td>比率</td>
<td>Ratio</td>
<td>C/O</td>
<td>1.06</td>
<td>0.95</td>
<td>0.87</td>
<td>0.90</td>
<td>0.96</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Table 10. 丸太内での曲げ強度性能の比較

| Bending strength of "Core wood" and "Outer wood" |

試験体数	Number of specimens	Outer wood	9	31	37	5	16	12	12
---	---	Core wood	3	10	7	-	1	2	3
距離	Distance from pith (mm)	Outer wood	66.6	64.8	75.0	85.4	95.1	123	120
		Core wood	31.0	33.1	31.6	47.5	30.0	48.0	47.3
比率	Ratio	C/O	0.47	0.51	0.42	0.56	0.32	0.39	0.39
Table 10. (つづき) (Continued)

<table>
<thead>
<tr>
<th>Kinds of test</th>
<th>Age of sample trees (Years)</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>11</th>
<th>12</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log No.</td>
<td>39-44</td>
<td>21-36</td>
<td>1-20</td>
<td>B-25</td>
<td>B-16</td>
<td>45</td>
<td>M-15</td>
<td>M-1</td>
</tr>
<tr>
<td>Density</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
<td>0.49</td>
<td>0.45</td>
<td>0.43</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>Corewood</td>
<td>0.42</td>
<td>0.40</td>
<td>0.39</td>
<td>0.41</td>
<td>0.44</td>
<td>0.42</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>Ratio C/O</td>
<td>1.11</td>
<td>1.03</td>
<td>1.00</td>
<td>0.84</td>
<td>0.98</td>
<td>0.98</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>Absorbed energy</td>
<td>0.357</td>
<td>0.369</td>
<td>0.407</td>
<td>0.474</td>
<td>0.557</td>
<td>0.495</td>
<td>0.584</td>
<td></td>
</tr>
<tr>
<td>Corewood</td>
<td>0.329</td>
<td>0.294</td>
<td>0.242</td>
<td></td>
<td>0.265</td>
<td>0.267</td>
<td>0.310</td>
<td></td>
</tr>
<tr>
<td>Ratio C/O</td>
<td>0.92</td>
<td>0.80</td>
<td>0.59</td>
<td></td>
<td>0.51</td>
<td>0.54</td>
<td>0.53</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 21. 衝撃曲げエネルギー (a) と樹心からの距離との関係
Relation between absorbed energy in impact bending (a) and distance from pith.
Fig. 22. 衝撃曲げエネルギーと容積重の関係
Relation between absorbed energy in impact bending (a) and density (R_u).

また、天然木のカメレ15,16の結果と比較すると、天然木のカメレでは、丸太ごとに得られた容積重の平均値が0.51〜0.66g/cm³と高いため、各種強度値は今回行った造林木の値よりすべて高かった。しかし、各強度性質の相互関係をみると、静的曲げの形質商では天然木は13.2km15〜15.5km16を示すのに対し、今回の造林木では13.6kmから14.2km17であった。またσ₅/E₉の値では、天然木の0.76%17,0.71%〜0.81%16に対し、造林木では0.76%（Table 9）、0.79%17と、同様の結果を示していた。さらに衝撃曲げのa/Rₙの値は、天然木で2.415,2.1〜3.016であったのに対し、造林木で2.4（Table 9）〜3.016であった。

このほか縦圧縮の形質商、τ₇/τ₉の値なども天然木の既発表値15とほとんど一致していた。

したがって、同一容積重で比較すると、各種強度値は、造林木でも天然木でも同様の値をとると考えられる。Table 10から、樹齢4〜5では“core wood”と“outer wood”との間に、静的曲げ強度性能では差が認められないことと、一方で、衝撃曲げのエネルギーは、“core wood”の方が4年生で8％、5年生で20％低くなっていたことがわかる。また、“outer wood”の容積重の値が7年生未満では約0.4g/cm³、7年生以上では約0.45g/cm³となっており、この容積重の変化に伴って、各種の強度値にも同様な傾向が認められる。σ₅とRₙ、E₉、樹心からの距離との単相関係数は、それぞれ0.70, 0.87, 0.46, σ₉とRₙ、E₉、樹心からの距離との単相関係数は、それぞれ0.65, 0.83, 0.38が得られ、いずれも1%危険率で有意となっていた。衝撃曲げ吸収エネルギーと容積重との関係をFig. 22に示した。

α=2.17Rₙの関係が得られた。
VI 帯のこによる鋸断性

試験木からの木材の切削抵抗、消費電力、製品の寸法精度、挽き肌の表面粗さを測定することにより、
帯のこによる鋸断性を検討した。

1. 実験方法および条件

使用した試験材は、樹齢11年生（M-14, M-16）であり、挽き材時の平均含水率は127.9%であった。
カメレレの気乾容積重は、天然木で0.44～0.72 g/cm³、造林木で0.42～0.52 g/cm³とされているが、試験に使用したカメレレの平均気乾容積重（15.0% MC）は0.45 g/cm³であった。
実験には、軽便自動送材車付帯のこ盤を使用した。本機のこ盤は直径1100 mmで直流モータ（定格容量22 kw）によって駆動され、回転数を無段変速することができる（max.875 rpm）。また、送材車は油圧走行式で、その速度を10段階に変速することができる。

使用した帯のこは Table 11 に示すとおりである。帯のこ A を切削力測定用、B を消費電力測定用とし、いずれも歯底にステライト加工を施し、歯底から10 mm のところに5 mm 幅でヒートテンションを施した。使用のこの歯型を Fig. 23 に示す。
実験条件は Table 12 のように設定し、1条件につき5回の繰り返しを行った。
帯のこは帯のこ数によって、7.2 kg/mm²で一定とした。挽材では、試験材はすべて末口から送り込み、心材部分を挽材しないようにした。

切削力の測定においては、Fig. 24 に示すひずみゲージを貼付した片持ち梁方式のロードセルを用いて、主分力と背分力（送り方向分力）を検出した。ロードセルは Photo 5 に示すように、送材車のヘッドストックに取りつけた。このロードセルは、主分力と背分力を直接測定出来た。
Fig. 23. 使用のご歯の形状
Shape of band saw teeth used.

Note): α. 歯喉角 β. 歯端角
Rake angle Sharpness angle
γ. 歯背角 ρ. 歯距
Clearance angle Tooth pitch
h. 歯高
Depth of gullet

Photo 5. ロードセルのヘッドストックへの取り付け
Installation of load cell to head stock.

Fig. 24. 切削力測定用のロードセル
Load cell for measuring cutting force.
ドセルに、厚さ40×幅150×長さ120mmの試験材を取りつけ、3mm厚の小片を打撚して作成した。こ
のドセルに、厚さ40×幅150×長さ120mmの試験材を取りつけ、3mm厚の小片を打撚して作成した。と
ここで、打撚材料を用いた場合、Fig.24中のLが減少するため、荷重とひずみの関係が異なってくる。
また、一般に2力方向には相互干渉が生じる（本実験で使用したロードセルは、主力の8.6％が背力に
影響したが、背力の主力方向への影響はほとんどなかった）。そこで2力の算出ではこれらの影響を
考慮した。
消費電力の測定においては、消費電力の測定の際に得られた薄板の厚さを測定した。測定箇所は末口および元
口から20cm離れた点と中央の計3点とし、その値を計測値の算出地点で、ノギスを用いて測定し、その最大値
と最小値の差をもって寸法精度とした。
さらに、挽き肌の表面粗さは、薄板の中央部から長さ約20cmの小片を切り取り、表面粗さ計（触針
の先端曲率半径10μm）を用いて、各小片につき任意の3箇所で測定した。なお、表面粗さ計は送材方
向と同方向に移動（移動距離10cm）させた。また、粗さは十点平均粗さ（Rz）で表示した。

2. 結果および考察
（1） 切削力
切削力の測定結果をFig.25に示す。一般に、主分力は、送り速度の増加とこ車回転数の減少にとも
ない増加する。Fig.25はこの傾向を示している。背分力は、各のこ車回転数と主分力はほぼ同様な値をとり、
主分力とは逆に送り速度の増加とこ車回転数の減少に伴い減少した。カメレレは、挽材したときの切削
力からいって、特に打撚にくくはなく、一般的ものである。
（2） 消費電力
正味挽材消費電力の測定結果をFig.26に示す。正味挽材消費電力は、送り速度およびのこ車回転数
の増加に伴い増加するといわれている。本実験においても、この傾向を示した。Fig.26において、正
味挽材消費電力は、いずれののこ車回転数においても送り速度の増加に伴い直線的に増加し、次の実験式
を得た。

\[Y = 0.13X + 1.27 \quad (500 \text{ rpm}) \]
\[Y = 0.11X + 2.14 \quad (600 \text{ rpm}) \]
\[Y = 0.15X + 1.31 \quad (700 \text{ rpm}) \]

ここで、Yは正味挽材消費電力（kw）、Xは送り速度（m/min）。

また、本実験の正味挽材消費電力の測定結果は、天然木の測定結果と比べて若干小さかった。カメ
レレを挽材したときの正味挽材消費電力は、切削力と同様に一般的なものであり、挽材しにくいと判断さ
れる値ではないと考えられる。
（3）寸法精度
結果をFig.27に示す。一般に送り速度の増加にともない寸法精度（平均最大寸法差）が悪くなる傾
向にあり、本実験でも明確ではないかおおよそその傾向を示した。しかし、寸法精度は、いずれの条件下
でも0.5mm以下でこの値はさらに小さなものではなく、特に問題はないと思われる。
ところで、樹木中には不十分な部分が生長応力（主として軸方向）が存在する。生長応力は柱材と製材
品に残留応力として存在し、挽き材によって平衡がくずされることにより、材に割れや挽き曲りが発生する
Fig. 25. 送り速度と切削力の関係
Relation between feed speed and cutting force.

Note)
○ のこ車回転数 500 rpm (主分力) Parallel force at wheel speed of 500 rpm.
□ のこ車回転数 600 rpm (主分力) Parallel force at wheel speed of 600 rpm.
△ のこ車回転数 700 rpm (主分力) Parallel force at wheel speed of 700 rpm.
● のこ車回転数 500 rpm (背分力) Normal force at wheel speed of 500 rpm.
■ のこ車回転数 600 rpm (背分力) Normal force at wheel speed of 600 rpm.
△ のこ車回転数 700 rpm (背分力) Normal force at wheel speed of 700 rpm.

板が乾燥することによって大きくなったと思われる。また、樹心を含むフリッチから挽いた板と樹心を含まないフリッチから挽いた板との曲りの違いや、板の厚さによる曲りの絶対量の違いは明ら
に見出しなかったが、同一フリッチでは中心よりも外側から挽いた板のほうが曲りが大きいようであった。
いずれにせよ、製品が曲ることが予想されるので、これを考慮して、目標寸法にある程度増して製材しなければならないであろう。
Fig. 26. 送り速度と正味挽き材消費電力の関係
Relation between feed speed and net consumed power.

Note): ○ のこ車回転数 500 rpm Wheel speed of 500 rpm.
□ のこ車回転数 600 rpm Wheel speed of 600 rpm.
△ のこ車回転数 700 rpm Wheel speed of 700 rpm.

（4）挽き肌の表面粗さ
結果を Fig. 28 に示す。いずれの条件下でも、挽き肌の表面粗さ（Rz）は 0.22～0.28 mm の間であり、帯のこで挽いた表面の粗さとしては著しく大きいものではないであろう。一歯当たりの送り量が大きい条件下で、若干の目ぼれやケパ立ちが目についた。また、挽き材表面へののこ層の付着が著しかった。

村田光司，藤原勝敏，西村勝美
Table 13. カメレレ挽き板の曲り
Warp*1 of kamerere boards. (in mm)

<table>
<thead>
<tr>
<th>W*1</th>
<th>番号*1</th>
<th>捻き材直後</th>
<th>Soon after sawing</th>
<th>3週間後</th>
<th>8週間後</th>
<th>After three weeks</th>
<th>After eight weeks*2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 cm*3</td>
<td>1</td>
<td>5.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10.0</td>
<td>11.0</td>
<td>13.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.0</td>
<td>5.5</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-6.0</td>
<td>-6.5</td>
<td>-7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-10.0</td>
<td>-13.5</td>
<td>-13.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-8.0</td>
<td>-8.5</td>
<td>-7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-7.0</td>
<td>-7.0</td>
<td>-9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0 cm*4</td>
<td>1</td>
<td>6.0</td>
<td>6.0</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9.0</td>
<td>11.5</td>
<td>-10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10.0</td>
<td>10.5</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.0</td>
<td>5.0</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-4.0</td>
<td>-4.0</td>
<td>-2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-10.0</td>
<td>-11.5</td>
<td>-10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-6.0</td>
<td>-8.5</td>
<td>-8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-11.0</td>
<td>-13.5</td>
<td>-11.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0 cm*3</td>
<td>1</td>
<td>8.0</td>
<td>7.0</td>
<td>13.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8.0</td>
<td>5.0</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.0</td>
<td>-6.5</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-8.0</td>
<td>-6.0</td>
<td>-9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5 cm*3</td>
<td>1</td>
<td>4.0</td>
<td>3.5</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.0</td>
<td>4.5</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0 cm*3</td>
<td>1</td>
<td>10.0</td>
<td>9.5</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.0</td>
<td>-3.0</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-8.0</td>
<td>-9.0</td>
<td>-12.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0 cm*3</td>
<td>1</td>
<td>0.0</td>
<td>1.5</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-5.0</td>
<td>-7.0</td>
<td>-8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 13. (つづき) (Continued)

<table>
<thead>
<tr>
<th>番号</th>
<th>数値</th>
<th>1週間後</th>
<th>3週間後</th>
<th>8週間後</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.0 cm*3</td>
<td>1</td>
<td>10.0</td>
<td>11.5</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-12.0</td>
<td>-9.5</td>
<td>-11.0</td>
</tr>
<tr>
<td>7.0 cm*4</td>
<td>1</td>
<td>10.0</td>
<td>11.5</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-10.0</td>
<td>-10.0</td>
<td>-11.0</td>
</tr>
</tbody>
</table>

Note) *1 図参照 See figure.
*2 8週間後の挽き板の平均含水率は21.4%であった。
Mean moisture content of the sawing boards after eight weeks was 21.4%.
*3 心去りフリッチから挽き材した。Sawn from a flitch without pith.
*4 心持ちフリッチから挽き材した。Sawn from a flitch with pith.

Fig. 27. 送り速度と挽き板の寸法精度の関係
Relation between feed speed and accuracy of sawn slats.
Note) ○: のこ車回転数 500 rpm
Wheel speed of 500 rpm.
□: のこ車回転数 600 rpm
Wheel speed of 600 rpm.
△: のこ車回転数 700 rpm
Wheel speed of 700 rpm.

VII ひき材の乾燥性

1. 実験方法

(1) 実験項目および実験方法の概要
ここで行った実験は、次の2項目である。供試原木が小径であったため乾燥スケジュール試験は実施しなかった。

A）急速乾燥試験（略称：100℃テスト）
厚さ2cmの無欠点の板目材を、乾球温度100～105℃に調整した恒温乾燥器中で乾燥し、試験材に現われる割れ、落ち込み（断面変形）および内部割れの3種類の損傷の程度から、板材の適正な乾燥スケジュールを検討する。
Fig. 28. 送り速度と挽き肌の表面粗さの関係
Relation between feed speed and surface roughness of sawn slats.

Note) □: のこ車回転数 600 rpm
Wheel speed of 600 rpm.
△: のこ車回転数 700 rpm
Wheel speed of 700 rpm.
パプア・ニューギニア産カメレレ（熱帯産造林木研究班）

についてのみ行ったが、乾燥性試験の結果や試験材調整時の観察感から推して、供試しなかったほかの丸太の場合もほぼ同じような測定値になるものと考えられる。

今回供試したカメレレ材は、乾燥初期の割れが全く発生しないかまたはごく軽微で、初期割れについて全く問題のない材料であると見られる。持ち込みの程度はほぼ中庸（No. 3）で、乾燥後期に生じる内部割れも比較的小さく、No. 2 程度であった。これらの測定結果から、厚さ 25～30 mm の板材に対する乾燥スケジュールは、表に示したように広葉樹材、ときに未成熟材の多い小径材としてはかなり強めの条件を与えるものと想定された。

一般にカメレレは、人工乾燥によって落ち込み変形の生じやすい木材の代表的なものとして知られているが、試験材は容積重が小めのために（0.35～0.42 g/cm³、平均 0.38 g/cm³）、各種欠点の発生が軽微であった。Table 14 に示した乾燥条件で、厚さ 25～30 mm の板材を含水率 10% まで人工乾燥するには 6～7 日を要するものと推定される。これは今までに扱ったカメレレよりも約 1 日乾燥日数が短い

試験材の初期含水率がきわめて高かったことを考慮すれば、試験材は欠点の発生も少なく乾燥のきわめて速い材料であったといえる。

(2) 乾燥性試験

この実験では、含水率 10～15% 時点の乾燥速度の指標である乾燥速度係数 k を求めた。測定結果と試験材の容積重、初期含水率などを一括して Table 15 に示す。

低含水率域（含水率 10～15%）における乾燥速度を示す指標である乾燥速度係数 k の値は、広葉樹でまさ目をとりは板目をとりより異なるものが多い。今回の場合では、同一樹種であっても丸太によって著しく差が認められた。たとえば丸太番号 B-13 の試験材では、まさ目、板目の k 値の比が 1 : 2.36 となり典型的な広葉樹材の傾向を示しているのに対し、M-3 や T-3 などは比の値が小さく、針葉樹材に近い傾向になっている。

いずれにせよ、今回試験したカメレレは比重が小めで、概して国産針葉樹材なみに乾燥速度係数が大きな材であったといえる。

Table 14. 急速乾燥試験結果と推定乾燥条件
Results of quick drying test and estimated drying condition.

<table>
<thead>
<tr>
<th>試料</th>
<th>初期含水率 M.C. (%)</th>
<th>初期割れ</th>
<th>断面変形</th>
<th>内部割れ</th>
<th>含水率1%まで乾燥時間 (hr)</th>
<th>初期乾球温度 D.B.T. (℃)</th>
<th>初期乾湿温差 W.B.D. (℃)</th>
<th>末期乾球温度 Final D.B.T. (℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-13-1</td>
<td>163.2</td>
<td>No. 1</td>
<td>No. 3</td>
<td>No. 2</td>
<td>28</td>
<td>55</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>M-13-2</td>
<td>149.4</td>
<td>No. 1</td>
<td>No. 3</td>
<td>No. 2</td>
<td>28</td>
<td>55</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>B-23-1</td>
<td>196.9</td>
<td>No. 1</td>
<td>No. 3</td>
<td>No. 2</td>
<td>23</td>
<td>55</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>B-23-2</td>
<td>193.6</td>
<td>No. 1</td>
<td>No. 3</td>
<td>No. 2</td>
<td>21</td>
<td>55</td>
<td>4</td>
<td>80</td>
</tr>
</tbody>
</table>

Note) * 5段階評価法による。番号が大きいものほど欠点が顕著であることを表す。
Evaluated by 5 step grading. No. 1: "None or Negligible", No. 2: "slight", No. 3: "Moderate".
Table 15. 乾燥性試験結果

Results of drying rate test

<table>
<thead>
<tr>
<th>試料</th>
<th>木取り</th>
<th>初期含水率</th>
<th>全乾容積</th>
<th>全乾収縮率</th>
<th>乾燥速度係数k</th>
<th>kのまさ目,板目の比</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen</td>
<td>Sawing pattern</td>
<td>Initial M.C. (%)</td>
<td>Oven dry density (g/cm³)</td>
<td>Shrinkage in oven dry</td>
<td>Tangential</td>
<td>Radial</td>
</tr>
<tr>
<td>B-13</td>
<td>まさ目 (E)</td>
<td>191.0</td>
<td>0.35</td>
<td>7.80</td>
<td>3.56</td>
<td>6.8 x 10⁻²</td>
</tr>
<tr>
<td></td>
<td>まさ目 (F)</td>
<td>194.8</td>
<td>0.36</td>
<td>8.09</td>
<td>3.58</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>まさ目 (F)</td>
<td>199.9</td>
<td>0.36</td>
<td>6.06</td>
<td>2.72</td>
<td>15.7</td>
</tr>
<tr>
<td></td>
<td>まさ目 (F)</td>
<td>200.0</td>
<td>0.35</td>
<td>5.84</td>
<td>3.26</td>
<td>16.2</td>
</tr>
<tr>
<td>M-3</td>
<td>まさ目 (E)</td>
<td>203.5</td>
<td>0.38</td>
<td>7.98</td>
<td>3.67</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>まさ目 (E)</td>
<td>216.6</td>
<td>0.40</td>
<td>7.27</td>
<td>3.86</td>
<td>8.9</td>
</tr>
<tr>
<td>M-13</td>
<td>まさ目 (F)</td>
<td>196.7</td>
<td>0.37</td>
<td>7.06</td>
<td>4.16</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>まさ目 (F)</td>
<td>193.6</td>
<td>0.36</td>
<td>7.06</td>
<td>3.96</td>
<td>9.1</td>
</tr>
<tr>
<td>T-3</td>
<td>まさ目 (E)</td>
<td>225.3</td>
<td>0.41</td>
<td>8.01</td>
<td>4.50</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>まさ目 (E)</td>
<td>229.3</td>
<td>0.42</td>
<td>8.08</td>
<td>4.50</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>まさ目 (F)</td>
<td>204.9</td>
<td>0.38</td>
<td>6.67</td>
<td>3.50</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>まさ目 (F)</td>
<td>207.0</td>
<td>0.39</td>
<td>7.03</td>
<td>3.75</td>
<td>6.5</td>
</tr>
</tbody>
</table>

VIII 単板切削

ベンヤレースにより、単板切削試験を行い、単板品質におよぼす単板切削試験を行い、単板歩出し厚さおよび刃口水平方向間隔の影響をしらべた。また、本実験で得られた単板品質に関する測定値と既往の報告にみられるカメレ単板の品質と比較検討した。なお、本実験に供したカメレ材の原木形状は、一般に利用されている合板用原木と比較するとかなり悪く、単板歩留あるいは単板製造能率の面で問題があるように考えられるため、単板歩留りについての若干の実験データを求めた。

1. 実験方法

単板品質におよぼす切首IJ 条件の影響をしらべた実験では、長さ約2.5 mの原木4本をそれぞれ長さ約30 cmに玉切りしたものを用いた。単板切削条件は、刃口水平方向間隔を単板歩出し厚さの95%一定に設定し、単板歩出し厚さを1.5, 3.0, 4.5, 6.0 mmの4水準、また単板歩出し厚さを一定して3.0 mmとし、刃口水平方向間隔はそれぞれの85, 90, 95, 100%の4種に変化させた。各条件あたり1個の玉切り材を供した。単板品質の指標として、単板の歩き、裏割れ率、面あらさを取り上げた。

単板の歩きは、ベンヤレースで切削された単板を長さ1mごとに切断して試料単板とし、各試料単板について4点、精度1/100 mmのマイクロメータで測定した。

裏割れは、各試料単板について10枚ずつ採取した8 cm（半径方向）×10 cm（繊維方向）の単板試験片の中央部に黒色スタンプインクを浸透させ、乾燥後切断し、万能投影機により単板の面を拡大し、その深さを測定した。なお、裏割れの深さを単板歩きで除し、裏割れ率（％）として表示した。

面あらさは、触針式あらさ計により最大高さを求めた。測定長は1単板試験片あたり70 mmで、単板面のプロフィールカーブから山と谷の数の大きい順に5点値を読み取った。触針の走向方向は、単板の繊維方向に直交方向とした。切削条件あたり10〜20枚の試料単板について測定した。
Table 16. 刃口水方向間隔を変化させたときの裏割れ率の測定結果

Results of measurements lathe check depth at various horizontal nose-bar openings.

<table>
<thead>
<tr>
<th>刃口水平方向間隔</th>
<th>原木番号</th>
<th>測定値数</th>
<th>平均</th>
<th>最小</th>
<th>最大</th>
<th>範囲</th>
<th>標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Log No.</td>
<td>Measurements Mean</td>
<td>Min.</td>
<td>Max.</td>
<td>Range</td>
<td>Standard deviation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95%</td>
<td>1</td>
<td>642</td>
<td>19.2</td>
<td>3.5</td>
<td>64.2</td>
<td>60.7</td>
<td>11.46</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>312</td>
<td>14.1</td>
<td>3.3</td>
<td>36.5</td>
<td>33.2</td>
<td>5.63</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>614</td>
<td>18.0</td>
<td>1.7</td>
<td>60.1</td>
<td>58.4</td>
<td>10.91</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>634</td>
<td>18.8</td>
<td>1.7</td>
<td>52.0</td>
<td>50.3</td>
<td>8.76</td>
</tr>
<tr>
<td>90%</td>
<td>1</td>
<td>737</td>
<td>18.6</td>
<td>3.4</td>
<td>56.5</td>
<td>53.1</td>
<td>9.06</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>660</td>
<td>16.7</td>
<td>3.3</td>
<td>58.3</td>
<td>55.0</td>
<td>8.66</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>636</td>
<td>16.4</td>
<td>3.5</td>
<td>51.7</td>
<td>48.2</td>
<td>11.09</td>
</tr>
<tr>
<td>95%</td>
<td>1</td>
<td>511</td>
<td>24.3</td>
<td>3.4</td>
<td>67.0</td>
<td>63.6</td>
<td>14.61</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>464</td>
<td>26.1</td>
<td>5.1</td>
<td>65.9</td>
<td>60.8</td>
<td>13.00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>666</td>
<td>18.7</td>
<td>3.3</td>
<td>58.8</td>
<td>55.5</td>
<td>11.58</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>572</td>
<td>21.7</td>
<td>3.4</td>
<td>58.7</td>
<td>55.3</td>
<td>9.79</td>
</tr>
<tr>
<td>100%</td>
<td>1</td>
<td>418</td>
<td>30.8</td>
<td>3.4</td>
<td>72.6</td>
<td>69.2</td>
<td>17.53</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>405</td>
<td>28.6</td>
<td>3.4</td>
<td>63.8</td>
<td>60.4</td>
<td>13.91</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>400</td>
<td>27.9</td>
<td>5.0</td>
<td>58.5</td>
<td>53.5</td>
<td>13.92</td>
</tr>
</tbody>
</table>

Note）単位。Unit：% 単板歩出し厚さ。Nominal veneer thickness: 3 mm

単板歩出し厚さは、長さ 90 cm の原木 7 本について、3 mm 単板を刃口水平方向間隔 95% で切削したときの値を求めた。

2. 実験結果および考察

（1） 単板品質と刃口水平方向間隔の関係

単板歩出し厚さを 3 mm に設定し、刃口水平方向間隔を変化させて切削したときの裏割れ率、面あらさ、厚さむらに関する実験結果を Table 16, 17, 18 に示す。なお、各切削条件あたり 3 〜 4 本の原木について実験を行っているが、裏割れ率および面あらさについてその平均値を求め、刃口水平方向間隔に対する関係を Fig. 29, 30 に示す。

裏割れ率および単板表・裏面の面あらさとも刃口水平方向間隔を狭くすることにより低下する傾向がみられ、また同一刃口水平方向間隔条件における原木間における差は小さい。刃口水平方向間隔を 90% 程度に設定して切削すると、裏割れ率は 20% 以下になり、面あらさは単板表面が 0.21 mm、裏面が 0.18
<table>
<thead>
<tr>
<th>Horizontal nose-bar opening (%)</th>
<th>Log No.</th>
<th>Tight side</th>
<th>Loose side</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Measurements</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>Min.</td>
</tr>
<tr>
<td>85</td>
<td>1</td>
<td>70</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>55</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>75</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>80</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>1</td>
<td>100</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>75</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>85</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>1</td>
<td>75</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>75</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>80</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>90</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>75</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>75</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>90</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td></td>
</tr>
</tbody>
</table>

Note) Unit: mm. Nominal veneer thickness: 3 mm
Table 18. 刃口水平方向間隔を変化させた時の単板厚さの測定結果
Results of measurements of veneer thickness at various horizontal nose-bar openings.

<table>
<thead>
<tr>
<th>刃口水平方向間隔（％）</th>
<th>測定値数</th>
<th>平均</th>
<th>最小</th>
<th>最大</th>
<th>範囲</th>
<th>標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>80</td>
<td>3.00</td>
<td>2.80</td>
<td>3.22</td>
<td>0.42</td>
<td>0.114</td>
</tr>
<tr>
<td>90</td>
<td>80</td>
<td>3.07</td>
<td>2.98</td>
<td>3.17</td>
<td>0.29</td>
<td>0.066</td>
</tr>
<tr>
<td>95</td>
<td>80</td>
<td>3.06</td>
<td>2.89</td>
<td>3.14</td>
<td>0.25</td>
<td>0.056</td>
</tr>
<tr>
<td>100</td>
<td>80</td>
<td>3.08</td>
<td>2.73</td>
<td>3.26</td>
<td>0.53</td>
<td>0.108</td>
</tr>
</tbody>
</table>

Note) 単位: Unit: mm, 単板歩出し厚さ, Nominal veneer thickness: 3 mm

Fig. 29. 裏割れ率（L）と刃口水平方向間隔（H）の関係
Relation between lathe check depth (L) and horizontal nose-bar opening (H).

Fig. 30. 単板面あらさ（R）と刃口水平方向間隔（H）の関係
Relation between veneer surface roughness (R) and horizontal nose-bar opening (H).

Note) ○: 単板裏面, Loose side of veneer.
 ●: 単板裏面, Tight side of veneer.
Table 19. Data concerning to the veneer quality of kamerere in the previous publications.

<table>
<thead>
<tr>
<th>Origin</th>
<th>Nominal veneer thickness (mm)</th>
<th>Lathe check depth (mm)</th>
<th>Veneer surface roughness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.0</td>
<td>70.5 (54.6–86.2)</td>
<td>0.29 (0.18–0.41)</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>60.0 (46.2–74.8)</td>
<td>0.34 (0.20–0.51)</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>63.9 (61.3–66.4)</td>
<td>0.17 (0.07–0.35)</td>
</tr>
<tr>
<td>B</td>
<td>1.0</td>
<td>35.0 (26.4–44.3)</td>
<td>0.39 (0.14–0.60)</td>
</tr>
<tr>
<td>C</td>
<td>1.5</td>
<td>41.2 (17.6–81.3)</td>
<td>0.29 (0.18–0.41)</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>58.3 (10.0–97.9)</td>
<td>0.34 (0.20–0.51)</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>56.4 (16.7–93.4)</td>
<td>0.17 (0.07–0.35)</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>61.3 (10.0–95.4)</td>
<td>0.39 (0.14–0.60)</td>
</tr>
</tbody>
</table>

Note) 刃口水平方向間隔 Horizontal nose-bar opening: A. B 90%, C 93% (1.5 mm), 96% (2.5 mm, 97% (3.0 mm, 3.4 mm)
切削角 Cutting angle: A. B 21°, C 22°30'

Table 21. Results of measurements of veneer surface

<table>
<thead>
<tr>
<th>Nominal veneer thickness (mm)</th>
<th>Log No.</th>
<th>Measurements</th>
<th>Tight side</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>Min.</td>
</tr>
<tr>
<td>1.5</td>
<td>1</td>
<td>75</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>75</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>80</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>90</td>
<td>0.24</td>
</tr>
<tr>
<td>Average</td>
<td>70</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>60</td>
<td>0.23</td>
<td>0.15</td>
</tr>
<tr>
<td>5.0</td>
<td>30</td>
<td>0.24</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Note) 単位: Unit: mm. 刃口水平方向間隔 Horizontal nose-bar opening: 95%

Table 19 の A の供試原木は天然木で、単板厚さは 1 mm と薄いにもかかわらず裏割れ率は 60% 以上の非常に高い値を示し、单板はその接線方向で裂断され、連続した单板切削あるいは単板の巻取り作業が困難であった。一方、今回実験を行った原木の場合にはこのような支障は認められなかった。刃口水平方向間隔を変化させて切削したときの単板の厚さむらをみると、Table 19 に示すように、刃口水平方向間隔が 95% の条件で単板の厚さむらは最小になる。1 本の原木について、連続した単板が切削されるようになった時点から単板を 1 m ごとに切断して試料単板とし、各試料単板の厚さをプロットすると Fig. 31 になる。同図から、刃口水平方向間隔が広い場合には、試料単板間の厚さの差が大きく、
Table 20. 単板歩出し厚さを変化させたときの裏割れ率の測定結果

Results of measurements of lathe check depth at various nominal veneer thicknesses.

<table>
<thead>
<tr>
<th>Nominal veneer thickness (mm)</th>
<th>Log No.</th>
<th>Measurements</th>
<th>Mean</th>
<th>Min.</th>
<th>Max.</th>
<th>Range</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>294</td>
<td>24.1</td>
<td>4.0</td>
<td>79.2</td>
<td>75.2</td>
<td>11.40</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>1 511</td>
<td>24.3</td>
<td>3.4</td>
<td>67.0</td>
<td>63.6</td>
<td>14.61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 464</td>
<td>28.1</td>
<td>5.1</td>
<td>66.9</td>
<td>60.8</td>
<td>13.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 666</td>
<td>18.7</td>
<td>3.3</td>
<td>58.8</td>
<td>55.5</td>
<td>11.59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 572</td>
<td>21.7</td>
<td>3.4</td>
<td>58.7</td>
<td>55.3</td>
<td>9.79</td>
<td></td>
</tr>
<tr>
<td>平均</td>
<td>-</td>
<td>22.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>- 644</td>
<td>26.7</td>
<td>4.5</td>
<td>69.0</td>
<td>64.5</td>
<td>17.73</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>- 259</td>
<td>26.2</td>
<td>3.3</td>
<td>71.8</td>
<td>68.5</td>
<td>19.33</td>
<td></td>
</tr>
</tbody>
</table>

Note) 単位、Unit：%、刃口水平方向間隔、Horizontal nose-bar opening：95%

狭い場合には特に刃口水平方向間隔が85％の条件で顕著にあらわれているが、切削開始直後の単板厚さが薄くなり、しかも、いずれの場合も全体としての単板の厚さむらが大きくなることがわかる。

（2）単板品質と単板歩出し厚さの関係

単板歩出し厚さを1.5 mm から 6.0 mm の範囲で変化させて単板切削を行ったときの裏割れ率、面あらさ、単板の厚さむらに関する測定結果を Table 20.21, 22 に示す。単板歩出し厚さを変化させても裏割れ率あるいは面あらさはほとんど変化せず、ほぼ一定の値を示している。しかし、単板の厚さむらは歩出し厚さの増大とともに大きくなっており、歩出し厚さが厚くなると切削中の原木の変形あるいはチャッ
Fig. 31. 原木切削開始時からの単板の長さと単板厚さ（t）の変動との関係
Variation in veneer thickness (t) with the lapse of time expressed in veneer length (l) after the start of cutting.

Note) l: 1 本の原木で切断時からの単板長さ veneer peeling length
刃口水平方向間隔 Horizontal nose-bar opening (%): ● 85, ○ 90, ▲ 95, △ 100
単板歩出し厚さ Nominal veneer thickning : 3 mm.

Table 22. 単板歩出し厚さを変化させたときの単板厚さの測定結果
Results of measurements of veneer thickness at various nominal veneer thicknesses.

<table>
<thead>
<tr>
<th>単板歩出し厚さ (mm)</th>
<th>計測値数</th>
<th>平均</th>
<th>最小</th>
<th>最大</th>
<th>範囲</th>
<th>標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal veneer thickness</td>
<td>Measurements</td>
<td>Mean</td>
<td>Min.</td>
<td>Max.</td>
<td>Range</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>1.5</td>
<td>80</td>
<td>1.55</td>
<td>1.47</td>
<td>1.65</td>
<td>0.18</td>
<td>0.038</td>
</tr>
<tr>
<td>3.0</td>
<td>80</td>
<td>3.06</td>
<td>2.89</td>
<td>3.14</td>
<td>0.25</td>
<td>0.066</td>
</tr>
<tr>
<td>4.5</td>
<td>60</td>
<td>4.55</td>
<td>4.38</td>
<td>4.70</td>
<td>0.32</td>
<td>0.075</td>
</tr>
<tr>
<td>6.0</td>
<td>30</td>
<td>6.15</td>
<td>6.03</td>
<td>6.38</td>
<td>0.35</td>
<td>0.120</td>
</tr>
</tbody>
</table>

Note) 単位, Unit: mm, 刃口水平方向間隔, Horizontal nose-bar opening: 95%
Table 23. 単板歩留りに関する測定結果
Veneer yield.

<table>
<thead>
<tr>
<th>原木</th>
<th>原木木口径(cm)</th>
<th>木き心径(cm)</th>
<th>原木体積に占める比率(%)</th>
<th>Percentage of veneer volume for log volume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top end diameter</td>
<td>Core diameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>長径</td>
<td>短径</td>
<td>長径</td>
<td>短径</td>
</tr>
<tr>
<td>1</td>
<td>34</td>
<td>33</td>
<td>19.5</td>
<td>34.9</td>
</tr>
<tr>
<td>2</td>
<td>26</td>
<td>25</td>
<td>11.0</td>
<td>20.2</td>
</tr>
<tr>
<td>3</td>
<td>33</td>
<td>27</td>
<td>11.0</td>
<td>16.6</td>
</tr>
<tr>
<td>4</td>
<td>34</td>
<td>34</td>
<td>11.0</td>
<td>10.8</td>
</tr>
<tr>
<td>5</td>
<td>35</td>
<td>35</td>
<td>13.0</td>
<td>14.2</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>34</td>
<td>11.0</td>
<td>10.5</td>
</tr>
<tr>
<td>7</td>
<td>36</td>
<td>33</td>
<td>11.0</td>
<td>11.5</td>
</tr>
<tr>
<td>平均</td>
<td>33</td>
<td>32</td>
<td>12.5</td>
<td>17.0</td>
</tr>
</tbody>
</table>

Note) 原木長さ Log length: 90 cm, チャック径 Chuck diameter: 外侧 outer 150 mm, 内側 inner 80 mm, 単板歩出し厚さ Nominal veneer thickness: 3 mm, 定尺単板 Full veneer sheet, 乱尺単板 Veneer Strip

（3）単板歩留り

一般に利用されている合板用原木と比較すると、今回供試したカメレレ原木の径は小さく、また原木の形状からみても単板製造にはやや適していないように思われる。そこで、供試原木数が少なく正確な値の把握は期待したいが、参考までに単板歩留りの測定を行い、その結果を Table 23、24 に示しておく。

単板切削は長さ 90 cm の原木 7 本について行い、得られた単板はクリッパーで 90 cm に裁断できるものを定尺単板、それ以下の幅のものを乱尺単板とし、それぞれの単板体積を求めた。乱尺単板については、単板幅別の出現率を求め Table 24 に示している。チャック径は 8 cm で、木き心径は 11 cm としたが、これは最近開発されている小径スピンドルを備えているベニアレースを使用すればむき心径は 5 cm 程度にまで小さくすることができ、原木体積に占めるむき心体積を低下させることができる。ただ、今回の実験で供試した 7 本の原木中 2 本（No. 1, No. 5）が、最終むき心に達する前に折損しており、この原木の折損の生ずる率は原木長さが長くなるほど、また単板厚さが厚くなるほど当然大きくなり、さらにチャック径を小さくした場合にはチャックが空転し切削が不可能になる率も大きくなるため、木き心径を小さくし単板歩留りを高めようとする場合には原木外周駆動方式のベニアレースの利用を考慮する必要がある。

高野 勉、木下恵幸
I. 試料合板の作製
（1） 単板の調整
供試単板は木材部機械加工研究室においてベンヤレースにより切削され、同部乾燥研究室においてベンヤドライヤにより乾燥されたものである。

単板は、厚さ 1.5 mm および 3.0 mm の 2 種類である。複数の原木から切削されているが、原木別の区分は考慮していない。

合板は Table 25 に示すような 2 種類の構成を設定した。
寸法 80×80 cm の合板を作製できるように単板を裁断した。接着剤液を塗布する単板は、小型グルースプレッダ（ロール長：45 cm）に適応させるため幅 40 cm に裁断し、すべて 2 枚はぎの状態で組み合わせることにした。

単板含水率は、ほぼ 10% に仕上げるように乾燥されているが、部分的に最高 15% 程度の範囲内でバラツキが見られた。

（2） 接着剤液の調製
接着剤は、合板用として市販されている製品を選び、5.5 mm 合板用にユリア樹脂接着剤、10 mm 合板用にフェノール樹脂接着剤を使用した。

接着剤液の配合はメーカーの仕様に従い、南洋材合板の製造における標準的な処法を採用した（Table

<table>
<thead>
<tr>
<th>合板厚さ (mm)</th>
<th>プライ数</th>
<th>単板の組合わせ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>3</td>
<td>1.5+3.0+1.5</td>
</tr>
<tr>
<td>10.0</td>
<td>5</td>
<td>1.5+3.0+1.5+3.0+1.5</td>
</tr>
</tbody>
</table>

Table 25. 合板の構成
Plywood composition.

<table>
<thead>
<tr>
<th>配合剤</th>
<th>ウレア樹脂接着剤 (Urea resin glue)</th>
<th>フェノール樹脂接着剤 (Phenolic resin glue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resin</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Wheat flour</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Water</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>NH₄Cl</td>
<td>0.8</td>
<td>-</td>
</tr>
<tr>
<td>Filler</td>
<td>-</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 26. 接着剤液の配合
Glue mixes.
26)。

(3) 接着剤液の塗布
実験用小型グルースプレッダ（ロール長：45 cm、ドクターロール付）を用い、塗布量35 g/(30 cm)²を目標に、心板あるいはそえ心板としての3.0 mm 単板に接着剤液を塗布した。

(4) 壓縮
圧縮は冷圧後熱圧法であり、100×100 cm のコールドプレスおよびホットプレス（蒸気加熱、3段）を使用した。圧縮条件を Table 27 に示す。

2．接着性試験

(1) 試験片の作製
試料合板（80×80 cm）の中から各厚さごとに3枚（A, B, C）を任意に抽出し、各試料合板から、普通合板の日本農林規格（JAS）による A 型接着力試験片（試験面の大きさ：25×25 mm）を80片ずつ採取した。試験片採取に当たって、心板の裏割れが引張り荷重によって圧縮されるタイプ（順）と関口するタイプ（逆）が隣接するように鋸目の切り込みを交互に入れている。順・逆は同数である。

(2) 試験片の前処理
作製された試験片の半分は常態試験に、半数は耐水試験に供した。
耐水試験にあたっては、ユリア樹脂接着剤を用いた合板は温冷水浸せき試験（JAS2 類相当）、フェノール樹脂接着剤を用いた合板は煮沸繰り返し試験（JAS 1 類相当）を行った。
試験片の前処理条件は次のとおりである。

温冷水浸せき試験
試験片を60±3℃の温水中に3時間浸せきし、その後、室温水にて冷却し、ぬれたままの状態で引張りせん断試験を行う。

煮沸繰り返し試験
試験片を沸とう水中に4時間浸せきし、次いで、60±3℃の恒温器中で20時間乾燥、さらに沸とう水中に4時間浸せきし、その後、室温水にて冷却し、ぬれたままの状態で引張りせん断試験を行う。

(3) 引張りせん断試験
試験片に毎分600 kgf 以下の速度で引張り荷重を加え、破壊時の荷重を測定し、単位面積当たりの数

<table>
<thead>
<tr>
<th>Table 27. 壓縮 条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold and hot-press schedules.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>溫 度 Temperature</th>
<th>壓 力 Pressure</th>
<th>時 間 Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°C</td>
<td>(kgf/cm²)</td>
<td>(min)</td>
</tr>
<tr>
<td>ユリア樹脂接着剤</td>
<td>Cold-press</td>
<td>Room Temp.</td>
<td>10</td>
</tr>
<tr>
<td>(5.5 mm 合板, Plywood)</td>
<td>110</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>フェノール樹脂接着剤</td>
<td>Cold-press</td>
<td>Room Temp.</td>
<td>10</td>
</tr>
<tr>
<td>(10 mm 合板, Plywood)</td>
<td>140</td>
<td>8</td>
<td>10.6</td>
</tr>
</tbody>
</table>
値を求めて接着強さとする。この試験では合板用引張り試験機を用い、容量 200 kgf、荷重速度約 180 kgf/min の条件で測定した。接着強さを求めるとともに、試験片の破壊面を観察し、破断している木部の試験面に対する面積比を%で表し、木部破断率とした。

3. 試験結果と考察

(1) 接着性試験

接着性試験の結果を一括して Table 28 に示す。

a) ユリア樹脂接着剤による接着性

常態試験（含水率約 10%）における接着強さの平均値は試料合板によって若干の差が認められるが、木部破断率はいずれも 100% であり、接着界面あるいは接着剤の凝集破壊はほとんど生じていない。よって、強さの差は単板の強度的な性能によって支配されているものと考えられる。

耐水試験の結果も常態試験とはほぼ同様である。A 試料の接着強さが他に比して低い値を示しているが、試験片 40 片中、特に測定値の低い 5 kgf/cm² 以下の試験片 8 片について観察すると、いずれも木部破断率は 100% であり、その部分の単板の強度が小さかったことを示している。

以上の結果から、ユリア樹脂接着剤による接着性は良好であるが、合板の強度的性能はラワン類合板に比較して低い傾向にあることが推測される。因みに、ラワン類合板の接着強さの JAS 規格値は 7 kgf/cm² であり、供試合板からの試験片にはその値を満足させるものが、含まれている。

b) フェノール樹脂接着剤による接着性

Table 28. 接着性能試験結果

<table>
<thead>
<tr>
<th>接着剤</th>
<th>試料記号</th>
<th>常態試験</th>
<th>促進劣化試験</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dry state test</td>
<td>Hot-water resisting test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bond strength(kgf/cm²)</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean (Max.~Min.)</td>
<td>Wood failure Mean</td>
</tr>
<tr>
<td>接着剤</td>
<td>Sample marks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yuria resin</td>
<td>A</td>
<td>7.3 (10.4~4.5)</td>
<td>1.65</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>9.4 (11.8~6.9)</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>8.9 (11.3~6.6)</td>
<td>1.11</td>
</tr>
<tr>
<td>Phenolic resin</td>
<td>A</td>
<td>10.7 (16.8~6.2)</td>
<td>2.47</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>10.1 (13.0~5.2)</td>
<td>1.48</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>10.8 (15.7~5.8)</td>
<td>2.33</td>
</tr>
</tbody>
</table>

Note: 試験片数はそれぞれ 40 片
Forty test pieces were measured in each items.
常態試験の結果はユリア樹脂接着剤の場合と同様に100%の木部破断率を示し、測定値は単板の強さに依存していると言えよう。ユリア樹脂の場合よりもやや大きな値を示しているが、最小値はほぼ同等で、変動が大きくなっている。フェノール樹脂は木材中へ浸透しやすいといわれ、そのために、部分的に木材の強度を高めていることも考えられる。

耐水試験においては、ユリア樹脂の場合と異なり、常態試験の値に対して20～30%の低下を示している。煮沸処理による木材の軟化の影響も考えられるが、木部破断率が低いことは接着界面の接着力あるいは接着剤の収縮力が単板の強さ以下である部分を生じていることを示している。各試料合板別に、木部破断率を大・中・小にグループ分けし、それぞれの接着強さを比較するとTable 29のようになる。この結果から、B試料においては木部破断率が低い場合、接着強さも低くなる傾向がうかがわれる。しかし、AおよびC試料では木部破断率と接着強さには関係が無いように思われる。

カメレレ造林木からの単板は、フェノール樹脂接着剤による接着性が良くないとは言えないが、場合によっては接着性能の劣る部分を生ずる可能性があることを予想しなければならない。その原因を明確に指摘することはできないが、今回の実験においては部分的であっても10%を超える単板含水率があったことから、このことがフェノール樹脂接着剤による接着に影響を及ぼしているものと考えられる。

(2) 試料合板の厚さ減少

一般に、仕上げ合板厚さを規定値に適合させるため、乾燥による収縮、圧縮による厚さ減少、表面研削仕上げによる厚さ減少などを考慮して、各層単板の切削時の剥き出し厚さを決定する。厚さ減少に関する前記3点の要因のうち、最も大きな影響を有し、かつ、予測困難な要因は圧縮による厚さ減少であろう。

今回の実験において、単板構成厚さに対する圧縮終了時の厚さの比を算出してTable 30に示す。

ユリア樹脂接着剤による5.5mm合板は、ほぼ目標とする厚さに仕上がり、ラワン類単板と同程度の厚さ減少であったが、フェノール樹脂接着剤による10mm合板の場合、予想以上の厚さ減少を生じた。目

| Table 29. 試料合板の接着性能（フェノール樹脂接着剤による） |
|------------------|------------------|------------------|------------------|
| 試料記号 | 木部破断率区分 | 試験片数 | 接着強さ Bond strength (kgf/cm²) | 平均木部破断率 |
| Sample marks | Degree of wood failure (%) | No. of test piece | Mean (Max. ~ Min.) | Standard deviation | Wood failure Mean(%) |
| A | 0~30 | 8 | 8.5 (10.4~7.3) | 1.08 | 15 |
| | 30~70 | 5 | 7.7 (9.2~6.2) | 1.10 | 52 |
| | 70~100 | 27 | 8.5 (11.7~6.7) | 1.21 | 94 |
| B | 0~30 | 23 | 7.6 (9.8~4.6) | 1.01 | 1 |
| | 30~70 | 7 | 8.4 (10.2~6.6) | 1.13 | 50 |
| | 70~100 | 9 | 8.3 (9.5~6.9) | 0.82 | 96 |
| C | 0~30 | 6 | 7.6 (8.8~6.4) | 0.85 | 13 |
| | 30~70 | 11 | 7.1 (10.2~3.6) | 2.12 | 51 |
| | 70~100 | 13 | 7.5 (9.5~5.2) | 1.10 | 98 |

Note) * 煮沸繰り返し試験による Cyclic Boil Test
Table 30. 加熱圧縮による厚さ減少
Reduction in thickness of plywood

<table>
<thead>
<tr>
<th>単板構成厚さ</th>
<th>Total thickness of veneer before press (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>10.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>熱圧後の合板厚さ</th>
<th>Plywood thickness after hot-press (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6~5.8</td>
<td></td>
</tr>
<tr>
<td>9.0~9.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>厚さ減少率</th>
<th>Ratio of reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7~3</td>
<td></td>
</tr>
<tr>
<td>14~12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>合板の比重</th>
<th>Specific gravity of plywood</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.47~0.41</td>
<td></td>
</tr>
<tr>
<td>0.51~0.48</td>
<td></td>
</tr>
</tbody>
</table>

Table 31. 試験木概要
Sample trees.

<table>
<thead>
<tr>
<th>原木番号</th>
<th>株齢</th>
<th>胸高直径</th>
<th>胸高</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log No.</td>
<td>Age (year old)</td>
<td>d.b.h. (cm)</td>
<td>Height (m)</td>
</tr>
<tr>
<td>39</td>
<td>4</td>
<td>18</td>
<td>21.0</td>
</tr>
<tr>
<td>43</td>
<td>4</td>
<td>19</td>
<td>20.0</td>
</tr>
<tr>
<td>44</td>
<td>4</td>
<td>16</td>
<td>19.0</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>15</td>
<td>26.2</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>20</td>
<td>26.4</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>20</td>
<td>27.0</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>16</td>
<td>24.5</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>18</td>
<td>27.0</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>21</td>
<td>26.3</td>
</tr>
<tr>
<td>B-25</td>
<td>6</td>
<td>27</td>
<td>27.3</td>
</tr>
<tr>
<td>B-16</td>
<td>7</td>
<td>32</td>
<td>29.6</td>
</tr>
<tr>
<td>M-45</td>
<td>11</td>
<td>24</td>
<td>35.7</td>
</tr>
<tr>
<td>M-15</td>
<td>11</td>
<td>34</td>
<td>40.2</td>
</tr>
<tr>
<td>M-1</td>
<td>12</td>
<td>38</td>
<td>37.3</td>
</tr>
<tr>
<td>T-1</td>
<td>15</td>
<td>41</td>
<td>44.0</td>
</tr>
</tbody>
</table>

バブル化試験

バブル原料としての適性評価と最適伐期の指標を得る目的で樹齢別試験を行った。

1 試験材と試験方法

(1) 試験材

4~15年生の15個体について試験を行った。試験材の樹齢、樹高および直径の関係を Table 31 に示す。

試験材は地上高1.65~3 m の部位から 1 m の丸太を採取し、製材後、パルプ化試験

(2) 試験方法

A) チップの密度と化学組成

チップの密度および木材分析は JIS に従った。ホロセルロースの定量は Wise 法に従い、亜塩酸ソーダ、酢酸による処理を 4 回繰り返した。

B) バブル化

蒸解はクラフト法で行い、チップ 200 g (絶乾) を 2 l 容オートクレーブに詰め、Table 32 に示す 3 条件で行った。

C) 紙力試験

紙力試験は、Kappa 値 28.3~33.4 の範囲で蒸解したパルプについて行っ

D) 形態的性質

紙力試験に供したパルプについて、繊維長、繊維幅およびルーメン幅をそれぞれ 150 本測定した。

2 結果と考察

樹齢間の比較を行うため、4 年生グループ (n=3)、6 年生グループ (n=8、7 年 1 個体を含む)、11 年
Table 32. 蒸解条件
Cooking conditions.

<table>
<thead>
<tr>
<th>蒸解条件</th>
<th>活性アルカリ</th>
<th>硫化度</th>
<th>液比</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(as Na₂O)</td>
<td>(as Na₂O)</td>
<td>(l/kg)</td>
</tr>
<tr>
<td>I</td>
<td>12</td>
<td>25</td>
<td>5.5 : 1</td>
</tr>
<tr>
<td>II</td>
<td>14</td>
<td>25</td>
<td>5.5 : 1</td>
</tr>
<tr>
<td>III</td>
<td>16</td>
<td>25</td>
<td>5.5 : 1</td>
</tr>
</tbody>
</table>

（Note）蒸解スケジュール：最高温度 170 ℃。最高温度保持時間 1.5 hr。同到達時間 1.5 hr。

Table 33. チップの容積重と化学組成
Density of chips and chemical composition.

<table>
<thead>
<tr>
<th>原木番号</th>
<th>樹齢</th>
<th>チップ容積重</th>
<th>灰分</th>
<th>1% NaOH抽出物</th>
<th>アルコール・ベンゼン抽出物</th>
<th>リグニン</th>
<th>ホロセルロース</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log No.</td>
<td>Age (Years)</td>
<td>Density of chips (g/cm³)</td>
<td>Ash (%)</td>
<td>1% NaOH ext.</td>
<td>Et. OH - benzene ext. (%)</td>
<td>Klason lignin (%)</td>
<td>Holocellulose (%)</td>
</tr>
<tr>
<td>39</td>
<td>4</td>
<td>0.34</td>
<td>0.7</td>
<td>12.1</td>
<td>0.7</td>
<td>29.3</td>
<td>75.2</td>
</tr>
<tr>
<td>43</td>
<td>4</td>
<td>0.34</td>
<td>0.6</td>
<td>11.4</td>
<td>0.6</td>
<td>28.7</td>
<td>76.4</td>
</tr>
<tr>
<td>44</td>
<td>4</td>
<td>0.37</td>
<td>0.7</td>
<td>12.0</td>
<td>0.5</td>
<td>29.4</td>
<td>75.8</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0.33</td>
<td>0.7</td>
<td>11.4</td>
<td>0.9</td>
<td>28.8</td>
<td>74.5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0.36</td>
<td>0.7</td>
<td>9.9</td>
<td>0.8</td>
<td>27.6</td>
<td>76.1</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0.34</td>
<td>1.0</td>
<td>11.4</td>
<td>1.1</td>
<td>29.9</td>
<td>75.5</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>0.36</td>
<td>0.7</td>
<td>10.6</td>
<td>0.7</td>
<td>28.0</td>
<td>76.6</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>0.32</td>
<td>0.6</td>
<td>11.4</td>
<td>0.7</td>
<td>28.4</td>
<td>75.2</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>0.39</td>
<td>0.8</td>
<td>11.9</td>
<td>0.6</td>
<td>28.1</td>
<td>75.9</td>
</tr>
<tr>
<td>B-25</td>
<td>6</td>
<td>0.36</td>
<td>0.7</td>
<td>12.1</td>
<td>0.7</td>
<td>30.1</td>
<td>78.8</td>
</tr>
<tr>
<td>B-16</td>
<td>7</td>
<td>0.39</td>
<td>1.0</td>
<td>12.1</td>
<td>0.5</td>
<td>31.6</td>
<td>76.1</td>
</tr>
<tr>
<td>45</td>
<td>11</td>
<td>0.39</td>
<td>0.8</td>
<td>10.4</td>
<td>0.6</td>
<td>28.2</td>
<td>76.2</td>
</tr>
<tr>
<td>M-15</td>
<td>11</td>
<td>0.40</td>
<td>0.6</td>
<td>10.9</td>
<td>0.8</td>
<td>32.2</td>
<td>74.8</td>
</tr>
<tr>
<td>M-1</td>
<td>12</td>
<td>0.39</td>
<td>1.1</td>
<td>11.3</td>
<td>0.6</td>
<td>31.8</td>
<td>74.5</td>
</tr>
<tr>
<td>T-1</td>
<td>15</td>
<td>0.41</td>
<td>0.7</td>
<td>12.5</td>
<td>0.9</td>
<td>31.0</td>
<td>74.6</td>
</tr>
<tr>
<td>平均</td>
<td></td>
<td>0.36</td>
<td>0.8</td>
<td>10.6</td>
<td>0.7</td>
<td>29.5</td>
<td>75.7</td>
</tr>
<tr>
<td>ブナ</td>
<td></td>
<td>0.50</td>
<td>15.7</td>
<td>1.0</td>
<td>23.8</td>
<td>76.9</td>
<td></td>
</tr>
</tbody>
</table>

生グループ（n=3, 12年生1個体を含む）に分け、15年生1個体は参考データとしてとりまとめた。

（1）チップの容積密度と化学組成の分析結果を Table 33 に示す。

チップの密度は 0.32〜0.41 g/cm³ の範囲にあり、広葉樹としては軽い材と云えよう。密度は樹齢とともに高くなる傾向を示したが、同一樹齢で生長（胸高直径、樹高）の異なる試料間の差異は認められなかった。

化学組成は 1% NaOH 抽出物、ホロセルロース量が樹齢とともにわずかに減少し、灰分、リグニン量およびアルコール・ベンゼン抽出物量が増加する傾向を示した。邦産材に比較して、1% NaOH 抽出物量...
Table 34. 蒸解条件とパルプの性質
Cooking conditions and physical properties of unbleached pulps.

<table>
<thead>
<tr>
<th>樹齢 Age (Years)</th>
<th>蒸解条件 Cooking condition</th>
<th>収率 Yield (%)</th>
<th>カッパ価 Kappa No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>精選 Screened</td>
<td>柏 Screening</td>
<td>全 Total</td>
</tr>
<tr>
<td>4 (n=3)</td>
<td>I</td>
<td>49.4</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>50.1</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>48.6</td>
<td></td>
</tr>
<tr>
<td>6 (n=8)</td>
<td>I</td>
<td>50.1</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>50.6</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>49.1</td>
<td>0.1</td>
</tr>
<tr>
<td>11 (n=3)</td>
<td>I</td>
<td>54.5</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>51.8</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>50.7</td>
<td></td>
</tr>
<tr>
<td>15 (n=1)</td>
<td>I</td>
<td>51.2</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>49.4</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>48.0</td>
<td></td>
</tr>
</tbody>
</table>

Note) 1. II, III: Table 32参照
(See Table 32)

Table 35. 強度的性質
Physical properties of sulphate pulps of kamerere.

<table>
<thead>
<tr>
<th>樹齢 Age (Years)</th>
<th>密度 Density (g/cm³)</th>
<th>裂断長 Breaking length (cm)</th>
<th>伸び率 Elongation</th>
<th>比破裂強さ Burst factor</th>
<th>引裂強さ Tear factor</th>
<th>耐折強さ Folding endurance (MIT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.83</td>
<td>11.0</td>
<td>6.45</td>
<td>8.42</td>
<td>116</td>
<td>3933</td>
</tr>
<tr>
<td>4</td>
<td>0.82</td>
<td>9.8</td>
<td>6.50</td>
<td>7.84</td>
<td>120</td>
<td>2991</td>
</tr>
<tr>
<td>4</td>
<td>0.83</td>
<td>10.5</td>
<td>5.95</td>
<td>7.04</td>
<td>114</td>
<td>3073</td>
</tr>
<tr>
<td>6</td>
<td>0.79</td>
<td>9.1</td>
<td>6.03</td>
<td>6.89</td>
<td>130</td>
<td>1153</td>
</tr>
<tr>
<td>6</td>
<td>0.79</td>
<td>9.6</td>
<td>5.63</td>
<td>7.29</td>
<td>122</td>
<td>1881</td>
</tr>
<tr>
<td>6</td>
<td>0.79</td>
<td>10.2</td>
<td>6.12</td>
<td>7.85</td>
<td>117</td>
<td>3600</td>
</tr>
<tr>
<td>6</td>
<td>0.78</td>
<td>9.5</td>
<td>5.60</td>
<td>7.08</td>
<td>132</td>
<td>1558</td>
</tr>
<tr>
<td>6</td>
<td>0.80</td>
<td>10.3</td>
<td>6.32</td>
<td>7.71</td>
<td>117</td>
<td>2352</td>
</tr>
<tr>
<td>6</td>
<td>0.77</td>
<td>9.4</td>
<td>5.67</td>
<td>6.99</td>
<td>138</td>
<td>866</td>
</tr>
<tr>
<td>6</td>
<td>0.80</td>
<td>9.9</td>
<td>5.95</td>
<td>7.63</td>
<td>142</td>
<td>1926</td>
</tr>
<tr>
<td>7</td>
<td>0.78</td>
<td>10.8</td>
<td>6.03</td>
<td>8.25</td>
<td>134</td>
<td>2622</td>
</tr>
<tr>
<td>11</td>
<td>0.70</td>
<td>8.5</td>
<td>5.22</td>
<td>6.62</td>
<td>165</td>
<td>669</td>
</tr>
<tr>
<td>11</td>
<td>0.75</td>
<td>8.4</td>
<td>5.66</td>
<td>6.42</td>
<td>147</td>
<td>544</td>
</tr>
<tr>
<td>12</td>
<td>0.76</td>
<td>9.1</td>
<td>6.05</td>
<td>7.14</td>
<td>152</td>
<td>1574</td>
</tr>
</tbody>
</table>

分散分析での F 値 Analysis of variance F

20.33** 8.59** 6.01* 3.44 15.66** 4.57*

Note) *: F{1,0.05} = 3.98. **: F{1,0.01} = 7.20
が数%低いが、クラーソンリグニン量は数%高い値を示した。

(2) パルプ収率と Kappa 価

樹齢および蒸解条件別に求めたパルプ収率と Kappa 価の平均値を Table 34 に示す。この結果、樹齢間での蒸解性に差は認められず、カメレレの適性蒸解条件としては E があげられる。このような条件下では精選パルプ収率約 50%、Kappa 価 30 程度のパルプが得られる。

(3) パルプの強度的性質

パルプの強度的性質と分散分析による F 検定の結果は Table 35 のとおりである。樹齢の差はシート密度、裂断長および比引裂強さは有意水準 1% で有意差があり、耐折強さおよび伸び率は有意水準 5% で有意差が認められた。これらの関係を図示すると Fig. 32 のようになり、比引裂強さ以外の強度的性質は樹齢が高くなるに従って低下した。

(4) 繊維の形態的性質

繊維長、繊維幅およびルーメン幅の分析を Fig. 33, 34, 35 に示す。これらの結果から樹齢が若くな
Fig. 33. 繊維長分布図
Distribution of fibre-length.

Fig. 34. 繊維幅分布図
Distribution of fiber width.

Fig. 35. 総維のルーメン幅分布図
Distribution of fiber lumen width.
Fig. 36. パルプの性質の比較
Comparison of paper properties between kamerere and Japanese hardwood species.

これに従って短繊維が多くなるが、繊維幅およびルーメン幅が広い繊維の割合が多くなることが明らかになった。
このことがシート密度の高い紙質を形成し、幼令木の紙質強度の増加に寄与していると考えられる。
以上の結果からカメレレ造林木は、邦産材と比較して、若干多く薬液を必要とするが、パルプ収率、紙質強度とも同程度であった。Fig. 36 に主なパルプの性質を邦産材との比較で示す。

要約

1. 解剖学的性質
カメレレ造林木の樹幹における樹心から外側への組織の変異をまとめると次のとおりである。
(1) 繊維長は樹心から外側へ急増するが、伸長のカーブがゆるやかになり安定する部位はおおむね樹心から 15〜20 cm 以後と考えられる。繊維径の変異は小さく樹心付近も外側もあまり変らない。これ
一 176 林業試験場研究報告 第 347 号

にに対して壁厚は外側へ急増し、おおよそ 2 〜 3 倍に達する。

（2） 管径要知の長さは樹心から外側にゆるやかに伸長するが樹心から 15 cm 付近で安定する。一方、管径の直径は樹心付近で小さく外側へ急増する。その安定するところは樹心から 10 〜 15 cm 付近である。これに対して分布数は直径と逆で樹心付近で最も多く、外側へ急減し 5 〜 10 cm 付近ではほぼ一定となる。

（3） 繊維の壁厚の増大の傾向は比重（容積密度数）の樹心から外側への増加の経過とよく似ており、容積密度数増加の原因は繊維の壁厚の著しい増加によるものと考えられる。

2. 容積重、および収縮率

樹齢の異なる、ホスキンス、モサ、ケラパット産材を選び、容積密度数、収縮率の樹幹内の分布を調査した。得られた結果を摘記すると、つきのようになる。

（1） 丸太の直径と容積密度数との関係は認められない。

（2） 容積密度数

ホスキンス産の全供試丸太の平均値は、338 kg/m^3 (269〜511 kg/m^3)、モサ産材は、359 kg/m^3 (339〜381 kg/m^3)、ケラパット産材は、369 kg/m^3 (278〜527 kg/m^3) である。樹齢が高くなるにつれて、容積密度数が大きくなる。

（3） 収縮率

ホスキンス産材、モサ産材、ケラパット産材の接線方向収縮率の平均値は、それぞれ、6.3% (4.8〜9.0 %)、6.4% (5.7〜7.3%)、6.7% (5.0〜8.3%)、同じく半径方向は、3.6% (2.0〜5.8%)、3.7% (3.1〜4.3%)、3.6% (2.7〜5.4%)、軸方向は、0.30% (0.12〜0.55%)、0.22% (0.16〜0.26%)、0.38% (0.12〜0.72%)、同様に T/R は、1.8% (1.0〜2.6%)、1.8% (1.6〜1.9%)、1.9% (1.2〜2.6%) である。

（4） 容積密度数、収縮率の半径方向への変動は、樹齢が若いホスキンス産材では、明確な傾向を示さない。これに対して、ホスキンス産材よりも樹齢が高い、モサ産（11年生）とケラパット産（18年生）の丸太については、地上高に関係なく、どの丸太においても、樹心付近の部分で容積密度数、接線、半径方向の収縮率の値が小さいが、周囲に向かうにつれて、それらの値が次第に大きくなる傾向が認められた。

（5） 今回の供試材のなかで最も樹齢が高い、ケラパット産のカメレレの外周部分であり、これらの指標の値は、その後も増加する傾向にあり、一般に成熟材部で認められるように、材質が安定するまでにはいたっていないことがわかる。

（6） ケラパット産材のうち、地上高 0.3 m、1.2 m の丸太においては、成熟材と類似の品質を示しはじめていることから、造林木の場合でも 20 年を過ぎると、ほぼ成熟材に達するとといえるようである。

（7） これを緑からの距離で示すと、半径で 20 cm〜25 cm におよぶ。

（8） 幹の地上高にともなう、容積密度数の平均値と樹高との関係は、地上高が高くなるにともなって、容積密度数の値が多少大きくなる傾向は認められるが、地上高による変化はそれほど大きくない。

（9） 同じ地上高における、各個体の容積密度数の比較は、個体による変動が大きく、地上 3 m の位置では、容積密度数があい低い個体は 300 kg/m^2、大きい個体は 390 kg/m^3 に達する。樹齢や地上高の影響よりも、個体の差の方が大きい。

3. 吸水性および吸水量

試験材は、若齢のため心材が淡色であるため、吸水量の半径方向の変動からは、辺心材の境界は明らか
ではなかった。一般的に淡色の木材は吸水量が多いが、試験材のうち、健全と見なされるものでは、吸水量は小さかった。
吸水量は、すでに報告したカメレレ天然木のそれに比較してやや大きかった。しかし、平均値としては、日本産の主要樹種に適用した5段階評価によると1あるいは2に含まれ、吸水量が小さい木材であるといえってよい。

4. 強度的性質

無欠点小試片による静的および衝撃曲げ試験を行い、さらに、その樹体内における変動を求めた。

静的曲げ（JIS-Z-2113）、衝撃曲げ（JIS-Z-2116）、引張り（JIS-Z-2112）、圧縮（JIS-Z-2111）、剪断（JIS-Z-2114）、硬さ（JIS-Z-2117）試験を行った。すべての試験は20℃±1℃、相対湿度75%±5%で行われた。これらの試験結果を表に示し、さらに、各強度的性質の相互関係を表に示した。また、髓からの距離が50mm以内のものを“Core wood”、それより外側のものを“Outer wood”と定義し、両者の曲げ強さの比較をした。

（1）Table 10 に示したようにいくつかの強度的性質は容積重と同様の傾向をもち、樹齢が低い程低い値を示した。

（2）σ_b/R_s、σ_c/R_s、τ_R/R_s の値はそれぞれ3.6km、7.6km、1.6mで、σ_b/E_b、σ_c/E_c の値は0.76%、0.31%であった。比例限度の最大強さに対する比は静的曲げ、圧縮でそれぞれ0.62、0.64であった。

（3）静的曲げ強さの

\[\sigma_b - \frac{1}{r} \sigma_c = \sigma_{br} \] （ただし、\(r = \frac{\sigma_b}{\sigma_c} \)）による計算値は実測値と比較すると、全試験片の総平均で1.01であった。

（4）静的曲げおよび衝撃曲げ試験の結果を髓からの距離とともに示したものがTable 10 およびFig. 18-21 に示した。すでに行ったカリビアマツについての結果とは異なり、曲げ破壊係数、曲げの形質商、曲げヤング係数などは、髓からの距離の影響を受けていなかった。一方、衝撃曲げ吸収エネルギーは、髓からの距離とともに急に増加し、後安定した値を示すようになることがわかった。

（5）気乾容積重（R_s）と衝撃曲げ吸収エネルギー（α）の間には次の関係があることがわかった

\[\alpha = 2.17 R_s^{1.89} \]

5. 帯のこによる観断性

観断性を切削力、消費電力、寸法精度、挽き肌の表面粗さを測定することにより検討した。実験は、一般的な条件下で行っており、挽き材後の材の曲りを除いて、問題となる点は無いといってよい。挽き材後の曲りに対しては、製材品の用途に応じて、低歩止りがなるが、材の曲りを考慮した歩増しを行ったり、また本試験では有意差が認められなかったが、未成熟部分は挽き材後の変形が大きいことが十分予想されるので未成熟材を避けた木取りが必要であろう。

6. ひき材の乾燥性

カメレレ造林木の乾燥特性を検討するため、温度100℃の急速乾燥試験（主として損傷の現れ方を調べ
るものと、温度 60℃ 一定条件下での乾燥性試験（主として低含水率域での乾燥速度を調べるもの）を実施した。入手した原木が小径であったため、スケジュール乾燥実験は行わなかった。実験結果を要約すると以下のようになる。

1) 急速乾燥試験の結果から、横断面の変形（落ち込みによる変形）は中庸であるが、初期割れや内部割れの発生は軽微で、乾燥容易な木材であると判断される。

2) 含水率 10〜15％ 時点の乾燥速度係数 k の値は比較的大きく、係数 k そのものはまさ目材、板目材ともに国産針葉樹程度の大きさを示し、乾燥の速い木材であると判断される。

7. 単板切削

カメレレ造林木の単板切削試験を行い、次の知見を得た。3 mm 厚単板を切削する場合、刃口水平方向間隔を 90％ 前後に設定すれば裏割れ率および面あらさ等の品質面からみて利用上支障のない単板を得ることができる。単板が厚くなっても裏割れ率および面あらさには大きな変化はみられないが、単板の厚さを増大しても一定の割れの発生はみられない。また、切削中における原木の折損あるいはチャックの空転する率が増大することが予想されるため、単板厚さの限界は 3 mm 程度（切削幅 90 cm、チャック径 80 mm の場合）と考えられる。

8. 単板の接着性

単板の接着性を検討するため、1.5 mm および 3.0 mm 厚の単板を用い、2 種類の合板用接着剤によって試料合板を作製、その接着性試験を行った。

ユリア樹脂接着剤による接着性は良好であったが、フェノール樹脂接着剤の場合、部分的に接着性の劣る傾向が認められた。

供試単板は容積重が比較的低く（気乾容積重 0.4 g/cm³ 前後）、接着性試験においても測定値が小さい傾向にあり、合板類の JAS の基準値（7 kgf/cm²）を下回る試験片が出現する可能性が高いため。また、強度の性能を要求される用途には不適格となることも予測される。

仕上がり合板厚さから、厚さ減少率を求めた結果、ユリア樹脂接着剤の場合は予測した値を示したが、フェノール樹脂接着剤の場合、10％ 以上の減少率を示し、単板構成厚さの決定には十分な検討を要するものと思われる。

9. パルプ特性

樹齢の異なる（4〜11 年）試料について、チップ容積密度、繊維形態、化学組成およびパルプの物性について検討した。

(1) チップの容積密度は樹齢とともにわずかに増加した。

(2) 繊維幅およびルーメン幅は樹齢とともに減少した。

(3) 化学組成では 1% NaOH 抽出物、キロセルロース量は樹齢とともにわずかに減少するが、灰分、リグニン量、アルコール：ベンゼン抽出物量は逆に増加した。

(4) すべての試料はクラフト法で容易にパルプ化されたが国産材に比較して、薬液消費量が高かった。

(5) パルプの物理的性質は、比引裂強さを除いて樹齢の増加に伴って低下した。

引用文献

2) Bisset, I.J.W.: The variation of Fiber Length within One tree of Eucalyptus regnans.
パプア・ニューギニア産カメレレ（熱帯産造林木研究班）

Aust. For. XIII, 86～96. (1949)
4) 古野 一：パプア・ニューギニア産木材の組織（輸入木材研報）No. 6, 46～47. (1977)
5) Myint Aung: Density variation outwards from the pith in some species of Shorea and its anatomical basis. Empire Forestry Review, 41, 43～56. (1962)
6) 中野達夫（未利用樹種研究班）：（パプア・ニューギニア材の加工の性質 第3報）東ニューブリテン産材の基礎的性質，容積密度数の変動，林試研報，294，5～7，(1977)
7) 藤方 健：南洋材の識別，56，日本木材加工技術協会，(1985)
8) 須川豊伸（木材部林産化学部）：フィリピン産レッドラワン材の解剖学的性質，林試研報，234，9～18，(1971)
9) 太田貞明（熱帯産造林木研究班）：熱帯産造林木の材質 第1報，フィジー産カリビアマツ，容積重，収縮率および繊維傾斜，林試研報，338，27～31，(1986)
10) 中野達夫・太田貞明（未利用樹種研究班）：パプア・ニューギニア材の加工的性質 第3報，東ニューブリテン産材の基礎的性質，容積密度数，比重および収縮率，林試研報，294，15～21，(1977)
12) 賀石猛夫（熱帯産造林木研究班）：熱帯産造林木の材質 第1報，フィジー産カリビアマツ，林試研報，338，32～35，(1986)
13) 賀石猛夫（未利用樹種研究班）：パプア・ニューギニア材の加工的性質 第6報，西ニューブリテン産材の材質，物理的性質および耐朽性，林試研報，299，60～66，(1978)
14) 賀石猛夫・中野達夫：日本産主要樹種の性質 物理的性質 第5報，木材の吸水量，林試研報，291，117～167，(1977)
15) 畑山強男（木材部，林産化学部）：南洋材の性質 19，カリマンタン，ニューギニア産10種の性質，林試研報，262，82～91，(1974)
16) 中井 孝（未利用樹種研究班）：パプア・ニューギニア材の加工的性質 第3報，東ニューブリテン産材の基礎的性質，強度的性質，林試研報，No 294，28～33，(1977)
17) 中井 孝（未利用樹種研究班）：パプア・ニューギニア材の加工的性質 第6報，西ニューブリテン産材の材質，物理的性質および耐朽性，林試研報，299，23～84，(1978)
18) 中井 孝（熱帯造林木研究班）：熱帯産造林木の材質 第1報，フィジー産カリビアマツ，林試研報，338，35～42，(1986)
19) 小西千代治・山口喜弥太（未利用樹種研究班）：パプア・ニューギニア材の加工的性質 第1報，ひき材加工，林試研報，292，50～59，(1977)
20) 山口喜弥太（木材部，林産化学部）：カリマンタン，ニューギニア産10種の性質，帯のこによる錫断性，林試研報，262，91～95，(1974)
21) 杉原彦一：帯鋸刃による挽材に関する研究 第2報，歯端速度及び緊張量の影響について，木材工業 9, 576，(1954)
22) 日本木材学会木質材料部門委員会編：木材工学辞典，pp. 295，工業出版，(1982)
24) 鳥見博史（熱帯産造林木研究班）：熱帯産造林木の材質 第1報，フィジー産カリビアマツ，ひき材の乾燥性，林試研報，299，42～47，(1986)
25) 佐藤庄一・鳥見博史（木材部，林産化学部）：南洋材の性質 19，カリマンタン，ニューギニア産10種の性質，林試研報，262，95～109，(1974)
26) 木下敬幸・大平裕（未利用樹種研究班）：パプア・ニューギニア材の加工的性質 第2報、東ニューオリンテック産材による合板・ボード類・パルプおよび木炭の製造、単板切削性、林試研報、292、98～103、（1977）

27) 木下敬幸・大平裕（未利用樹種研究班）：パプア・ニューギニア材の加工的性質 第9報、西ニューオリンテック産材による合板・ボード類・パルプおよび木炭の製造、単板切削性、林試研報、299、152～155、（1978）

28) 日本合板工業組合連合会：南洋材等代替原料開発促進事業告書、（1983）

29) 全国木工機械工業会：昭和57年度南洋材等代替原料開発促進事業機械開発事業報告書、（1983）

30) 佐々木、加藤、田之内：バックアップ・ロール駆動レースの開発と間伐材小径木LVL化プランへの活用、木材工業、38（10）、481～486、（1983）

31) 米沢保正ほか：日本産主要樹種の性質、材の化学組成およびパルプ化試験、林試研報、253、55～99、（1972）
Wood Properties of Tropical Plantation-grown Species II

Eucalyptus deglupta Blume from Several Plantations in
Papua New Guinea

Working Group on Properties of Tropical Plantation-grown Species(1)

Summary

Wood properties of Kamerere (_Eucalyptus deglupta_ Blum.) from plantations in New Britain, Papua New Guinea were examined and discussed in relation to their effective utilization. Items of examination were as follows: wood anatomy, density, shrinkage, water absorption, mechanical properties, kiln-drying of sawn timber, sawing properties, rotary veneer peeling, veneer gluing, and pulp- and paper-making.

I. Material

Seventy-four logs from twenty-seven sample trees from plantations in Keravat, Hoskins, Buvussi, Mosa, Tabau Rikau of New Britain, Papua New Guinea, were used and they are described in Table 1.

II. Wood Anatomy

Wood anatomical properties were described and their variations within a stem, with distance from pith and with height above ground level, were discussed. They are shown in Tables 2-4, Figs. 1-8 and Photo 4.

The length of fibers increased rapidly from pith to fifteen or twenty cm along a radius and then stayed more or less constant towards bark. The thickness of their wall increased rapidly and significantly from pith outwards, whereas their diameter stayed invariable. This clearly explained the cause of variation in the density of wood from pith to bark.

III. Density and shrinkage

Density and shrinkage were examined on fifty-one logs from twenty-three sample trees from Keravat, Mosa and Hoskins.

From a sample tree from Keravat, specimens were taken at 0.3 m, 1.2 m, 3.0 m, 6.0 m, 9.0 m, 12 m, 15 m and 18 m from ground level of the stem for analysis of variation of properties within a stem. Moreover, specimens were taken between 2.7 m and 13 m from ground level of the stem at intervals of 2 m for sample trees from Hoskins and Mosa. The ages of sample trees from Hoskins, Mosa and Keravat were four, five and six years old, eleven years old and eighteen years old respectively.

The results are as follows:

The number of the sample logs, the general description of logs, the log diameter, the maximum, minimum, mean value and standard deviation of shrinkage of all the samples for each planting region were shown in Table 5 and 6.

1) It was difficult to find a correlation between log diameter and basic density for all sample logs (Fig. 9).

Received March 2, 1987

(1) Wood Technology Division, Forest Products Chemistry Division, Wood Utilization Division.
2) The histogram of basic density for the samples of Hoskins and Mosa and Keravat is shown in Fig. 10.

3) The mean value of the basic density for logs from Hoskins was 338 kg/m³, ranging from 269 kg/m³ to 511 kg/m³. The samples from Mosa was 369 kg/m³, ranging from 339 kg/m³ to 381 kg/m³ and the samples from Keravat was 369 kg/m³, ranging from 278 kg/m³ to 527 kg/m³.

4) The mean values of tangential shrinkage from green to oven-dry for Hoskins, Mosa and Keravat samples were 6.3% (ranging from 4.8% to 9.0%), 6.4% (from 5.7% to 7.3%) and 6.7% (from 5.0% to 8.3%), respectively.

5) The mean values of radial shrinkage, in the same condition, were 3.6% (2.0-5.8%), 3.7% (3.1-4.3%) and 3.6% (2.7-5.4%), respectively.

6) The mean values of longitudinal shrinkage, in the same condition, were 0.3% (0.12-0.55%), 0.22% (0.16-0.26%) and 0.38% (0.12-0.72%), respectively.

7) The values of transverse shrinkage anisotropy when green to oven-dry (T/R) ranged from 1.8 to 1.9% for all sample logs.

8) The variations of basic density and shrinkage when green to oven-dry with distance from pith are shown in Fig. 12 for Hoskins, Fig. 13 for Keravat. It was difficult to find any certain relations between basic density or shrinkage and distance from pith to bark (4, 5, 6, years old) for Hoskins samples. This is because of the young age of the trees. On the other hand, with older aged samples from Mosa and Keravat, an increasing tendency was found from pith outwards, especially in the part beyond about 10 cm from pith.

9) According to the results of observations on basic density and shrinkage, juvenile wood seemed to be within 20 cm radius from pith. For a similar reason it is reasonable to consider that the formation of mature wood starts when a tree becomes around twenty years old. Within the stem, variation of density with height is not significant, whereas variation between sample trees is.

IV. Water Absorption

1. Radial variation of water absorption in the cross section.

Water-absorbility in the cross section expressed by the variation pattern of the amount of absorbed water along a radius of a disk was considered to be a useful source of information on the ease of impregnation and various kinds of properties with relation to timber utilization.

To determine this pattern, five diametrical specimens which had sizes of (L) 15 mm and (T) 30 mm were cut. After seasoning at 12 ~ 13% EMC, the specimens were immersed to a depth of 50 mm below the surface of water and kept at 25°C for three hours. They were then taken out of the water, split tangentially into small pieces and weighed with a weighing bottle. The water-absorption amount, ΔW, was obtained by the equation.

$$\Delta W = \frac{1}{2} (U_w - U_i) d r_0 / 100$$

where ΔW is the water-absorption amount per unit area after three hours (g/cm²), U_w is the moisture content (%) after water-absorption for three hours, U_i is the moisture content (%) before water-absorption, d is the fiber-directional length (cm), and r_0 is the density when oven-dry (g/cm³).

Fig. 17 shows the radial variations of water absorption and air-dry density of five specimens. The variation of water absorption shown in the figure shows no clear evidence of the boundary between sap- and heartwood.
2. Water absorption

Specimens were taken from five logs for the determination of water absorption according to the Japanese Industrial Standard (JIS) Z 2104. The results are shown in Table 7. The amount of water absorption was comparable to those of some Japanese hardwood species which belong to the groups with the first or second lowest value.

V. Mechanical Properties

Takashi Nakai

The results of several mechanical tests and their within-log variation in static and impact bending strengths were obtained by the method prescribed in the Japanese Industrial Standard (JIS). Items of the test were as follows; static bending (JIS Z 2113), impact bending (JIS Z 2116), tension (JIS Z 2112), compression parallel to grain (JIS Z 2111), shear (JIS Z 2114) and hardness (JIS Z 2117). All the above-mentioned tests were carried out in a room controlled at a temperature of 20°C ±1°C with a relative humidity of 75%±5%.

The results are shown with density (R_u) and moisture content (u) at test in Table 8. The number of specimens, mean value, standard deviation and the coefficient of variation are given in Table 8. The relations between the mechanical properties are shown in Table 9. The bending strength of “corewood” and “outerwood” are compared in Table 10, where “corewood” is defined as the portion within 50 mm from pith and the outside of it as “outerwood”.

The results were as follows;

1) Air-dry density varied with the age of trees, namely it was about 0.40 g/cm³ for sample trees younger than seven years old, whereas it was about 0.45 g/cm³ for the sample trees more than seven years old. Several mechanical properties have a similar trend as air-dry density has with the age of sample trees.

2) The values of specific strength, σ_b/R_u, σ_c/R_u, τ_R/R_u were 13.6 km, 7.6 km, 1.6 km respectively.

3) The values of σ_b/E_b and σ_c/E_c were 0.76% and 0.31% respectively and the ratios of proportional limit stress to maximum stress were 0.62 for bending and 0.64 for compression.

4) The value φ_σb = σ_b/σ_c agreed with the calculated value φ = (3r - 1)/(r + 1), where r = σ_c/σ_b.

5) The results of the static and impact bending tests of small clear specimens for discussion on their within-log variation are given in Table 10 and Figs. 18-21. The effect of distance from pith was not clear in modulus of rupture, specific strength in bending and modulus of elasticity, being different from those values of softwood species such as Pinus caribaea studied previously by the author. On the other hand, the absorbed energy in impact bending has a tendency to increase rapidly until it becomes constant with the distance from the pith as shown in Fig. 21.

6) The relationship between density (R_u) and absorbed energy in impact bending (a) was expressed as follows; a = 2.17 R_u^{1.68}

VI. Sawing Properties

Kohji Murata, Katsutoshi Fujimura, Katsumi Nishimura

Sawing properties with a band mill were examined by measuring cutting force, net consumed power, the accuracy of sawn slates, and the roughness of the sawn surface. Under general working conditions, there were few problems concerning the sawing Kamerere timbers, except for the warp of boards soon after sawing. Taking into account
the occurrence of this defect, it is recommended that timbers should be sawn to a size slightly larger than that of the corresponding final product. Moreover, the necessity of application of some sawing patterns which will be able to avoid juvenile wood is stressed for minimizing warp which occurs more frequently in juvenile wood than in mature wood.

VII. Drying Properties of Lumber

Hiroshi SUMI

Two kinds of drying experiments were carried out.

The results are as follows;

(1) Quick drying test (so-called 100°C test)

The three kinds of drying defects that occurred in the flat-grained test pieces from the two sample logs (M-13, B-23) were classified according to the 5-step grading rule. The degree of initial checking was rated to No. 1 (none or negligible), that of deformation was to No. 3 (moderate) and that of honeycombing was to No. 2 (slight) for two logs. From the results, the suitable kiln drying schedule for 1 inch thick lumber should be estimated to be 55°C of the initial dry bulb temperature and 4°C of the initial wet-bulb depression. The kiln drying time of 1 inch thick lumber may be about 7 days from green to 10% moisture content without serious drying defects such as collapse or honeycombing which is prone to occur in Kamerere from natural forests.

(2) Experiment for drying rate

The values of the drying rate coefficient k at 10% moisture content under the condition of 60°C (DBT) and 25°C (WBD) were slightly different depending on the logs (B-13, M-3/M-13, T-3). The drying rate coefficients of the flat-grained pieces (k_f) were 16.0×10^{-2} for the B-13 log, 7.5×10^{-2} for the M-3 and M-13 log and 6.6×10^{-2} for the T-3 log. On the other hand, those of the edge-grained pieces (k_e) were 6.8×10^{-2}, 8.4×10^{-2}, 5.0×10^{-2} for each log, respectively. The ratio of the k value of the flat and of the edge-grained pieces of B-13 log showed largest value (1: 2.36) that was considered to be reasonable for the general hardwood. Generally speaking, the drying rate of Kamerere was similar to those of most Japanese softwoods. This might be caused by its low density (0.35-0.42 g/cm³).

VIII. Rotary Veneer Peeling

Tsutomu TAKANO, Nobuyuki KINOSHITA

A veneer cut test was conducted to find the relationships between veneer quality and nominal veneer thickness or horizontal bar opening.

A narrow bar opening provided a smooth surface and a smaller lathe check depth expressed in percentage to the thickness of the veneer. At a 90% bar opening to the thickness of the veneer, for example, the depth of the lathe check was smaller than 20% to the veneer thickness, and the maximum roughness of the veneer surface was 0.21 mm on the tight side and 0.18 mm on the loose side. These veneers are of a suitable quality for general use. The thickness of the veneer fluctuated when the bar opening was wider. The thickness of the veneers was generally thinner than the nominal thickness at the beginning of peeling with a narrower bar opening.

The veneer cutting of Kamerere with 90% bar opening to the thickness would be most suitable for expecting good quality veneer in 3 mm nominal thickness.

The veneer thickness did not have any considerable influences on the roughness of the veneer surface and the depth of the lathe check. However, variation in veneer thickness increased with the thickness. Moreover, the spin-out frequency of the veneer blocks would increase with veneer thickness.

IX. Veneer gluing

Hitoshi KARASAWA
The glue bond quality of the plywoods made of rotary veneers was examined.

The dimension of veneers was 1.5 mm and 3.0 mm in thickness, and about 80 cm square in area.

The moisture content of veneers was about 10% except for several veneers in which 15% was observed.

The veneer lay-up and designed thickness of plywood are shown in Table 25. The adhesives used were Urea-formaldehyde resin for 3-ply and Phenol-formaldehyde resin for 5-ply construction. The glue mixings are shown in Table 26. The glue spread was about 390 g/m² for double gluelines. The glues were coated on the core veneer by a rubber-roll spreader with a doctor roller. In the press operation, the assembled veneers sample were cold pressed simultaneously at room temperature. Subsequently individual each panel was hot-pressed under the conditions shown in Table 27. The bond strength was measured in accordance with the bond strength test methods prescribed by the Japanese Agricultural Standard of plywood. The test specimens, 80 mm long and 25 mm wide, were cut from the sample Plywoods and kerfed at intervals of 25 mm to provide a test area in the center of the specimen. Eighty specimens were taken from each of the three sample plywoods of both constructions. In this case, one half of the total specimens were of a "Close type" and another half were of an "Open type" or the direction of the lathe check in the veneer.

Besides the dry state test, a hot-water resistance test also was conducted. The cyclic boil test was given for those plywoods glued with phenolic resin and the hot and cold soak test was given for those glued with urea resin. The bond quality of plywoods glued with urea resin was satisfactory for commercial plywoods, showing high wood failure (higher than 80%) in the hot-water resistance test. However, it is necessary to mention that some of the specimens from the plywoods glued with phenolic resin showed a lower wood failure percentage and bond strength in the cyclic boil test as shown in Table 5. To overcome this problem, controlling the moisture content is essential. The thickness of the plywoods was substantially reduced after the hot pressing even more so than that of Meranti or Lauan (Shorea and Parashorea spp.) plywoods.

Because of the lower bond strength of the dry state test the plywoods derived from Kamerere plantation-grown trees, could possibly have lower strength properties, and would not provide good materials for structural uses.

X. Pulp- and Papermaking

Isao Takano, Kinya Shimada, Kuninori Usami

Sample trees of from four to eleven years old were examined to determine their pulp- and paper making properties, morphological properties, chemical composition, and pulps physical properties.

The results were as follows:

1. The density of chips increased slightly with the age of the sample trees.
2. Fiber width and fiber lumen width decreased with the age of the sample trees.
3. Holocellulose and 1% NaOH extract decreased, whereas ash, lignin and alcohol-benzene extracts increased with the age of the sample trees.
4. The entire sample was easy to pulp by a kraft process, although they required more chemicals than Japanese species.
5. In general the physical properties of the pulps decreased with the age of sample trees except for the tear factor.